湖南省洪江市中考数学过关检测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、下列说法错误的是()
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
2、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()
A. B. C. D.
3、一元二次方程配方后可化为(???????)
A. B.
C. D.
4、下列各式中表示二次函数的是()
A.y=x2+ B.y=2﹣x2
C.y= D.y=(x﹣1)2﹣x2
5、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()
A.10 B.12 C.15 D.18
二、多选题(5小题,每小题3分,共计15分)
1、关于抛物线y=(x﹣2)2+1,下列说法不正确的是(??)
A.开口向上,顶点坐标(﹣2,1)????????????????? B.开口向下,对称轴是直线x=2
C.开口向下,顶点坐标(2,1)????????????????????? D.当x>2时,函数值y随x值的增大而增大
2、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
3、观察如图推理过程,错误的是(???????)
A.因为的度数为,所以
B.因为,所以
C.因为垂直平分,所以
D.因为,所以
4、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(???????)
A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)
B.图形C3上任意一点到原点的最大距离是1
C.图形C3的周长大于2π
D.图形C3所围成区域的面积大于2且小于π
5、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()
A.b2﹣4ac<0
B.当x>﹣1时,y随x增大而减小
C.a+b+c<0
D.若方程ax2+bx+c-m=0没有实数根,则m>2
E.3a+c<0
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.
2、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.
3、某批青稞种子在相同条件下发芽试验结果如下表:
每次试验粒数
50
100
300
400
600
1000
发芽频数
47
96
284
380
571
948
估计这批青稞发芽的概率是___________.(结果保留到0.01)
4、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.
5、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.
四、简答题(2小题,每小题10分,共计20分)
1、已知抛物线y=mx2-2mx-3.
(1)若抛物线的顶点的纵坐标是-2,求此时m的值;
(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.
2、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销