基本信息
文件名称:2023年度辽宁省盖州市中考数学考试综合练习(名师推荐)附答案详解.docx
文件大小:456.55 KB
总页数:23 页
更新时间:2025-05-29
总字数:约8.02千字
文档摘要

辽宁省盖州市中考数学考试综合练习

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为(???????)

A. B.

C. D.

2、关于x的一元二次方程根的情况,下列说法正确的是(???????)

A.有两个不相等的实数根 B.有两个相等的实数根

C.无实数根 D.无法确定

3、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()

A.DE=BG B.DE>BG C.DE<BG D.DE≥BG

4、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()

A. B. C. D.

5、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()

A.55° B.65° C.60° D.75°

二、多选题(5小题,每小题3分,共计15分)

1、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(???????)

A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE

2、如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(???????)

A.射线一定过点O B.点O是三条中线的交点

C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点

3、下列说法不正确的是()

A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧

C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等

4、下列方程一定不是一元二次方程的是(???????)

A. B.

C. D.

5、下列说法不正确的是(???????)

A.经过三个点有且只有一个圆

B.经过两点的圆的圆心是这两点连线的中点

C.钝角三角形的外心在三角形外部

D.等腰三角形的外心即为其中心

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、关于的方程,k=_____时,方程有实数根.

2、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.

3、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.

4、写出一个满足“当时,随增大而减小”的二次函数解析式______.

5、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.

四、解答题(6小题,每小题10分,共计60分)

1、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)设每月的销售利润为W,请直接写出W与x的函数关系式.

2、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点.(要求写出作法,不要求证明)

3、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.

(1)求抛物线的解析式;

(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?

4、解方程:

(1)x2-x-2=0;

(2)3x(x-2)=2-x.

5、用指定方法解下列方程: