贵州省仁怀市中考数学练习题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、已知⊙O的半径为4,,则点A在()
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
2、如图,正方形边长为4,、、、分别是、、、上的点,且.设、两点间的距离为,四边形的面积为,则与的函数图象可能是(???????)
A. B. C. D.
3、下表记录了一名球员在罚球线上投篮的结果:
投篮次数
50
100
150
200
250
400
500
800
投中次数
28
63
87
122
148
242
301
480
投中频率
0.560
0.630
0.580
0.610
0.592
0.605
0.602
0.600
根据频率的稳定性,估计这名球员投篮一次投中的概率约是()
A.0.560 B.0.580 C.0.600 D.0.620
4、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()
A. B.四边形EFGH是菱形
C. D.
5、从下列命题中,随机抽取一个是真命题的概率是()
(1)无理数都是无限小数;
(2)因式分解;
(3)棱长是的正方体的表面展开图的周长一定是;
(4)弧长是,面积是的扇形的圆心角是.
A. B. C. D.1
二、多选题(5小题,每小题3分,共计15分)
1、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(???????)
A.与相切 B.四边形是菱形
C. D.
2、下表时二次函数y=ax2+bx+c的x,y的部分对应值:
…
…
…
…
则对于该函数的性质的判断中正确的是()A.该二次函数有最大值
B.不等式y>﹣1的解集是x<0或x>2
C.方程y=ax2+bx+c的两个实数根分别位于﹣<x<0和2<x<之间
D.当x>0时,函数值y随x的增大而增大
3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的有()
A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>0
4、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(???)
A. B. C. D.
5、如图所示,二次函数的图象的一部分,图像与x轴交于点.下列结论中正确的是(???????)
A.抛物线与x轴的另一个交点坐标是
B.
C.若抛物线经过点,则关于x的一元二次方程的两根分别为,5
D.将抛物线向左平移3个单位,则新抛物线的表达式为
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.
2、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
3、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).
4、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是__________.
5、如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为_______.
四、简答题(2小题,每小题10分,共计20分)
1、某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.
(1)求y与x的函数表达式;
(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?
2、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,