吉林省敦化市中考数学题库试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、平面直角坐标系中点关于原点对称的点的坐标是()
A. B. C. D.
2、如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为(?????)
A.160o B.120o C.100o D.80o
3、一元二次方程x2-3x+1=0的根的情况是(???????).
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
4、设方程的两根分别是,则的值为(???????)
A.3 B. C. D.
5、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(???????)
A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+2000
二、多选题(5小题,每小题3分,共计15分)
1、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()
A.b2﹣4ac<0
B.当x>﹣1时,y随x增大而减小
C.a+b+c<0
D.若方程ax2+bx+c-m=0没有实数根,则m>2
E.3a+c<0
2、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()
A. B. C.2 D.-2
3、下列说法不正确的是(???????)
A.经过三个点有且只有一个圆
B.经过两点的圆的圆心是这两点连线的中点
C.钝角三角形的外心在三角形外部
D.等腰三角形的外心即为其中心
4、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(???????)
A.或 B. C. D.不存在
5、下列关于圆的叙述正确的有()
A.对角互补的四边形是圆内接四边形
B.圆的切线垂直于圆的半径
C.正多边形中心角的度数等于这个正多边形一个外角的度数
D.过圆外一点所画的圆的两条切线长相等
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、两直角边分别为6、8,那么的内接圆的半径为____________.
2、如图,四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为______.
3、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)
①0<p<1-;???②1-<p<1;???③q<n;???④q>2k-k.
4、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
5、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.
四、简答题(2小题,每小题10分,共计20分)
1、在平面直角坐标系中,抛物线的对称轴为.
求的值及抛物线与轴的交点坐标;
若抛物线与轴有交点,且交点都在点,之间,求的取值范围.
2、根据下列条件,求二次函数的解析式.
(1)图象经过(0,1),(1,﹣2),(2,3)三点;
(2)图象的顶点(2,3),且经过点(3,1);
五、解答题(4小题,每小题10分,共计40分)
1、已知:如图,△ABC中,AB=AC,AB>BC.
求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.
作法:①以点A为圆心,AB长为半径画圆;
②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);
③连接BP交AC于点D.
线段BD就是所求作的线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证