贵州省仁怀市中考数学题库检测试题打印
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()
A.① B.② C.③ D.①或③
2、从下列命题中,随机抽取一个是真命题的概率是()
(1)无理数都是无限小数;
(2)因式分解;
(3)棱长是的正方体的表面展开图的周长一定是;
(4)弧长是,面积是的扇形的圆心角是.
A. B. C. D.1
3、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()
A.AM=BM B.CM=DM C. D.
4、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(???????)
A.1个 B.2个 C.3个 D.4个
5、一元二次方程配方后可化为(???????)
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(???????)
A.是劣弧的中点 B.是圆的切线
C. D.
2、关于x的一元二次方程(k-1)x2+4x+k-1=0有两个相等的实数根,则k的值为(???????)
A.1 B.0 C.3 D.-3
3、下列图形中,是中心对称图形的是(???????)
A. B.
C. D.
4、下列四个命题中正确的是(???????)
A.与圆有公共点的直线是该圆的切线
B.垂直于圆的半径的直线是该圆的切线
C.到圆心的距离等于半径的直线是该圆的切线
D.过圆直径的端点,垂直于此直径的直线是该圆的切线
5、下列命题正确的是(???????)
A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心
C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).
2、关于的方程,k=_____时,方程有实数根.
3、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.
4、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.
5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.
四、简答题(2小题,每小题10分,共计20分)
1、抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.
(1)求b、c的值;
(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;
(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.
2、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.
(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;
(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;
(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.
五、解答题(4小题,每小题10分,共计40分)
1、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.
(1)如图,当点E在线段CD上时,
①依题意补全图形,并直接写出BC与CF的位置关系;
②求证:点G为BF的中点.
(2)直接写出AE,BE,AG之间的数量关系.
2、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).
(1)图中