辽宁省东港市中考数学综合提升测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、点A(x,y)在第二象限内,且│x│=2,│y│=3,则点A关于原点对称的点的坐标为(???????)
A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)
2、由二次函数,可知(???????)
A.其图象的开口向下 B.其图象的对称轴为直线x=-3
C.其最小值为1 D.当x3时,y随x的增大而增大
3、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()
A. B. C. D.
4、已知⊙O的半径为4,,则点A在()
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
5、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()
A. B. C.5 D.5
二、多选题(5小题,每小题3分,共计15分)
1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:
x
…
-1
0
1
2
3
…
y
…
3
0
-1
m
3
…
①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)
A.① B.② C.③ D.④
2、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:
x
…
-2
-1
0
1
2
…
…
t
m
2
2
n
…
已知.则下列结论中,正确的是(???????)
A.
B.和是方程的两个根
C.
D.(s取任意实数)
3、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(???????)
A. B. C. D.
4、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(????????)
A.A、B关于x轴对称; B.A、B关于y轴对称;
C.A、B关于原点对称; D.若A、B之间的距离为4
5、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、若某二次函数图象的形状与抛物线y=3x2相同,且顶点坐标为(0,-2),则它的表达式为________.
2、如图,在平面直角坐标系中,坐标原点为O,抛物线y=a(x﹣2)2+1(a>0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则△AOB的面积为________.
3、已知二次函数,当x=_______时,y取得最小值.
4、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.
5、点(2,-3)关于原点的对称点的坐标为_____.
四、简答题(2小题,每小题10分,共计20分)
1、已知:.
(1)求代数式的值;
(2)如果,求的值.
2、如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部(在同一条直线上),测得,如果小明眼睛距地面高度,为,试确定楼的高度.
五、解答题(4小题,每小题10分,共计40分)
1、用适当的方法解下列方程:
(1)??????????????????????????????????????(2)
2、关于x的一元二次方程kx2+(k+1)x+=0.
(1)当k取何值时,方程有两个不相等的实数根?
(2)若其根的判别式的值为3,求k的值及该方程的根.
3、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决