基本信息
文件名称:2022年安徽省宁国市中考数学试题预测试卷(精选题)附答案详解.docx
文件大小:697.81 KB
总页数:34 页
更新时间:2025-05-29
总字数:约1.06万字
文档摘要

安徽省宁国市中考数学试题预测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()

A. B. C.5 D.5

2、如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是(????????)

A.在⊙O内 B.在⊙O上 C.在⊙O外 D.以上都有可能

3、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()

A.4米 B.5米 C.2米 D.7米

4、如图是由5个相同的小正方体搭成的几何体,它的左视图是().

A. B. C. D.

5、一元二次方程,用配方法解该方程,配方后的方程为()

A. B.

C. D.

二、多选题(5小题,每小题3分,共计15分)

1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:

x

-1

0

1

2

3

y

3

0

-1

m

3

①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)

A.① B.② C.③ D.④

2、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(???????)

A.与相切 B.四边形是菱形

C. D.

3、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()

A.4a+b=0

B.9a+c>﹣3b

C.7a﹣3b+2c>0

D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2

E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2

4、下列四个说法中,不正确的是(???)

A.一元二次方程有实数根

B.一元二次方程有实数根

C.一元二次方程有实数根

D.一元二次方程x2+4x+5=a(a≥1)有实数根

5、下列说法正确的是(???????)

A.圆是轴对称图形,它有无数条对称轴

B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边

C.弦长相等,则弦所对的弦心距也相等

D.垂直于弦的直径平分这条弦,并且平分弦所对的弧

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:

x

-3

-2

-1

0

1

y

-4

-3

-4

-7

-12

则该图象的对称轴是___________

2、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.

3、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.

4、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.

5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.

(1)求反比例函数解析式;

(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;

(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

2、如图,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB