湖南省洪江市中考数学过关检测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,正方形边长为4,、、、分别是、、、上的点,且.设、两点间的距离为,四边形的面积为,则与的函数图象可能是(???????)
A. B. C. D.
2、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()
A.数字之和是0的概率为0 B.数字之和是正数的概率为
C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同
3、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()
A.3 B. C. D.
4、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()
A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°
5、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()
A.12个 B.9个 C.6个 D.3个
二、多选题(5小题,每小题3分,共计15分)
1、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(???)
A. B. C. D.
2、若为圆内接四边形,则下列哪个选项可能成立(???????)
A. B.
C. D.
3、下列关于x的方程的说法正确的是()
A.一定有两个实数根 B.可能只有一个实数根
C.可能无实数根 D.当时,方程有两个负实数根
4、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(?????)
A. B. C. D.
5、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.
2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
3、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.
4、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.
5、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
四、简答题(2小题,每小题10分,共计20分)
1、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.
(1)求反比例函数和一次函数的解析式;
(2)求一次函数与反比例函数图象的两个交点A,C的坐标.
2、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
五、解答题(4小题,每小题10分,