基本信息
文件名称:2022年浙江省嵊州市中考数学每日一练试卷含答案详解【综合卷】.docx
文件大小:635.4 KB
总页数:30 页
更新时间:2025-05-29
总字数:约9.66千字
文档摘要

浙江省嵊州市中考数学每日一练试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(????????)

A. B. C. D.

2、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(?????)

A. B.2 C. D.2

3、对于抛物线,下列说法正确的是()

A.抛物线开口向上

B.当时,y随x增大而减小

C.函数最小值为﹣2

D.顶点坐标为(1,﹣2)

4、下列方程中,一定是关于x的一元二次方程的是(???????)

A. B.

C. D.

5、设方程的两根分别是,则的值为(???????)

A.3 B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(???????)

A.

B.当时,y随x的增大而增大

C.无论a取任何不为0的数,该函数的图象必经过定点

D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是

2、下列图形中,是中心对称图形的是(???????)

A. B.

C. D.

3、下列四个说法中,不正确的是(???)

A.一元二次方程有实数根

B.一元二次方程有实数根

C.一元二次方程有实数根

D.一元二次方程x2+4x+5=a(a≥1)有实数根

4、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(???????)

A.23 B.32 C. D.

5、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:

x

-1

0

1

2

3

y

3

0

-1

m

3

①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)

A.① B.② C.③ D.④

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4.这六个小球除标记的数字外,其余完全相同.将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为______.

2、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

3、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.

4、点(2,-3)关于原点的对称点的坐标为_____.

5、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:

种子个数

100

200

300

400

500

600

700

800

900

1000

发芽种子个数

94

188

281

349

435

531

625

719

812

902

发芽种子频率

(结果保留两位小数)

0.94

0.94

0.94

0.87

0.87

0.89

0.89

0.90

0.90

0.90

根据频率的稳定性,估计这种植物种子不发芽的概率是______.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.

(1)求反比例函数解析式;

(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;

(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

2、已知点P(2,2)在反比例函数y=(k≠0)的图象上.

(1)当x=-3时,求y的值;

(2)当1<x<3时,求y的取值范围.

五、解答题(4小题