吉林省龙井市中考数学综合提升测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.
A.1 B.2 C.3 D.4
2、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()
A. B. C. D.8
3、直线不经过第二象限,则关于的方程实数解的个数是(???).
A.0个 B.1个 C.2个 D.1个或2个
4、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(???????)
A.30° B.90° C.120° D.180°
5、下列说法正确的是()
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
二、多选题(5小题,每小题3分,共计15分)
1、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(???????)
A.
B.
C.
D.若(-5,),(2,)是抛物线上两点,则
2、关于x的一元二次方程(k-1)x2+4x+k-1=0有两个相等的实数根,则k的值为(???????)
A.1 B.0 C.3 D.-3
3、下列说法中,不正确的是(???????)
A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心
D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心
4、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
5、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(???????)
A.
B.当时,y随x的增大而增大
C.无论a取任何不为0的数,该函数的图象必经过定点
D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
2、抛物线是二次函数,则m=___.
3、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.
4、某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
40
100
200
400
1000
“射中9环以上”的次数
15
33
78
158
321
801
“射中9环以下”的频率
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
5、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.
四、简答题(2小题,每小题10分,共计20分)
1、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.
2、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
五、解答题(4小题,每小题10分,共计40分)
1、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB