山东省乐陵市中考数学综合提升测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、二次函数的顶点坐标为,图象如图所示,有下列四个结论:①;②;③④,其中结论正确的个数为(???????)
A.个 B.个 C.个 D.个
2、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是()
A.80° B.70° C.60° D.50°
3、下列图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
4、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为()
A.1 B.2 C.3 D.4
5、一元二次方程配方后可化为(???????)
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、如图,在的网格中,点,,,,均在网格的格点上,下面结论正确的有(???????)
A.点是的外心 B.点是的外心
C.点是的外心 D.点是的外心
2、如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小不可能是(???????)
A. B. C. D.
3、已知点,下面的说法正确的是(???)
A.点与点关于轴对称,则点的坐标为
B.点绕原点按顺时针方向旋转后到点,则点的坐标为
C.点与点关于原点中心对称,则点的坐标为
D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为
4、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()
A. B.
C. D.
5、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(???????)
A.1 B.3 C.5 D.7
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.
2、如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为___________.
3、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
5、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.
四、简答题(2小题,每小题10分,共计20分)
1、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.
(1)求一次函数y1的表达式与反比例函数y2的表达式;
(2)当y1<y2,时,直接写出自变量x的取值范围;
(3)点P是x轴上一点,当时,请求出点P的坐标.
2、已知图中的曲线是反比例函数y=(m为常数)图象的一支.
(1)根据图象位置,求m的取值范围;
(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.
五、解答题(4小题,每小题10分,共计40分)
1、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:
(1)这次活动共调查了______人,并补充完整条形统计图;
(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;
(3)在一次购物中,小明和小亮都