基本信息
文件名称:2022江苏省高邮市中考数学练习题及完整答案详解(精选题).docx
文件大小:775.03 KB
总页数:34 页
更新时间:2025-05-29
总字数:约9.66千字
文档摘要

江苏省高邮市中考数学练习题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是()

A. B. C. D.

2、平面直角坐标系中点关于原点对称的点的坐标是()

A. B. C. D.

3、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()

A. B. C. D.

4、下列一元二次方程中,有两个不相等实数根的是(??)

A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=0

5、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(?????).

A.50° B.40° C.70° D.30°

二、多选题(5小题,每小题3分,共计15分)

1、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(???????)

A. B.

C.△AEF是等腰直角三角形 D.若,则

2、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(???????)

A.

B.

C.

D.若(-5,),(2,)是抛物线上两点,则

3、已知二次函数y=x2-4x+a,下列说法正确的是()

A.当x<1时,y随x的增大而减小

B.若图象与x轴有交点,则a≥-4

C.当a=3时,不等式x2-4x+a<0的解集是1<x<3

D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3

4、下列关于圆的叙述正确的有()

A.对角互补的四边形是圆内接四边形

B.圆的切线垂直于圆的半径

C.正多边形中心角的度数等于这个正多边形一个外角的度数

D.过圆外一点所画的圆的两条切线长相等

5、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(???????)

A. B.

C. D.时,方程有解

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.

2、如图,四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为______.

3、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

4、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.

5、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____

四、简答题(2小题,每小题10分,共计20分)

1、某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.

(1)求y与x的函数表达式;

(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?

2、如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).

(1)求该抛物线的解析式;

(2)若直线y=kx(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;

(3)当﹣4<x≤m时,y有最大值,求m的值.

五、解答题(4小题,每小题10分,共计40分)

1、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.

(1)求直线AC的解析式;

(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a