黑龙江省安达市中考数学必背100题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()
A. B. C. D.
2、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()
A. B. C. D.
3、如图,,,,都是上的点,,垂足为,若,则的度数为()
A. B. C. D.
4、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.
A.1 B.2 C.3 D.4
5、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()
A. B. C. D.
二、多选题(5小题,每小题3分,共计15分)
1、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是(???????)组,进行轴对称变换的是(???????).
A. B. C. D.
2、下列各数不是方程解的是(???????)
A.6 B.2 C.4 D.0
3、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:
x
…
-1
0
1
2
3
…
y
…
3
0
-1
m
3
…
①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)
A.① B.② C.③ D.④
4、下列方程中,有实数根的方程是()
A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0
C.3x2﹣2x﹣1=0 D.x2+2x+4=0
5、如图,在的网格中,点,,,,均在网格的格点上,下面结论正确的有(???????)
A.点是的外心 B.点是的外心
C.点是的外心 D.点是的外心
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.
2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
3、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是_____.
4、抛物线的开口方向向______.
5、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.
四、简答题(2小题,每小题10分,共计20分)
1、如图,在的正三角形的网格中,的三个顶点都在格点上.请按要求画图和计算:①仅用无刻度直尺;②保留作图痕迹.
(1)在图1中,画出的边上的中线.
(2)在图2中,求的值.
2、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.
五、解答题(4小题,每小题10分,共计40分)
1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.
(1)求二次函数的解析式;
(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.
2、一个二次函数y=(k﹣1).求k值.
3、已知关于的二次函数.
(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
(2)若,两点在该二次函数的图象上,直接写出与的大小关系;
(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标:;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据切线的性质,连接过切点的半径,构造正方形求解即可.
【详解】
如图所示:
设油桶所在的