基本信息
文件名称:2022四川省峨眉山市中考数学达标测试附完整答案详解(精选题).docx
文件大小:1.02 MB
总页数:38 页
更新时间:2025-05-29
总字数:约1.07万字
文档摘要

四川省峨眉山市中考数学达标测试

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,五边形是⊙O的内接正五边形,则的度数为(???)

A. B. C. D.

2、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()

A. B. C. D.

3、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()

A. B. C. D.

4、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()

A. B.1 C.2 D.

5、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().

A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-2

二、多选题(5小题,每小题3分,共计15分)

1、已知关于的方程,下列说法不正确的是(???????)

A.当时,方程无解 B.当时,方程有两个相等的实数根

C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根

2、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(???????)

A. B.

C. D.时,方程有解

3、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()

A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0

4、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:

x

-2

-1

0

1

2

t

m

2

2

n

已知.则下列结论中,正确的是(???????)

A.

B.和是方程的两个根

C.

D.(s取任意实数)

5、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()

A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.

2、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.

3、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是__________.

4、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____

5、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.

(1)直接写出的长(用含的代数式表示);

(2)当点落在的边上时,求的值;

(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;

(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.

2、如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点O在射线AC上(点O不与点A重合),垂足为D,以点O为圆心,分别交射线AC于E、F两点,设OD=x.

(1)如图1,当点O为AC边的中点时,求x的值;

(2)如图2,当点O与点C重合时,连接DF;求弦DF的长;

(3)当半圆O与BC无交点时,直接写出x的取值范围.