基本信息
文件名称:2022黑龙江省尚志市中考数学强化训练附答案详解【典型题】.docx
文件大小:658.84 KB
总页数:28 页
更新时间:2025-05-29
总字数:约9.11千字
文档摘要

黑龙江省尚志市中考数学强化训练

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()

A.个 B.个 C.个 D.个

2、在中,AB,CD为两条弦,下列说法:①若,则;②若,则;③若,则弧AB=2弧CD;④若,则.其中正确的有(???????)

A.1个 B.2个 C.3个 D.4个

3、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:

-2

0

1

3

6

-4

-6

-4

下列各选项中,正确的是A.这个函数的图象开口向下

B.这个函数的图象与x轴无交点

C.这个函数的最小值小于-6

D.当时,y的值随x值的增大而增大

4、从下列命题中,随机抽取一个是真命题的概率是(???????)

(1)无理数都是无限小数;

(2)因式分解;

(3)棱长是的正方体的表面展开图的周长一定是;

(4)两条对角线长分别为6和8的菱形的周长是40.

A. B. C. D.1

5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()

A.3 B.4 C.5 D.6

二、多选题(5小题,每小题3分,共计15分)

1、下列图形中,是中心对称图形的是(???????)

A. B.

C. D.

2、下列说法不正确的是(???????)

A.经过三个点有且只有一个圆

B.经过两点的圆的圆心是这两点连线的中点

C.钝角三角形的外心在三角形外部

D.等腰三角形的外心即为其中心

3、下列命题中,不正确的是(???????)

A.三点可确定一个圆

B.三角形的外心是三角形三边中线的交点

C.一个三角形有且只有一个外接圆

D.三角形的外心必在三角形的内部或外部

4、下列命题不正确的是(???)

A.三角形的内心到三角形三个顶点的距离相等

B.三角形的内心不一定在三角形的内部

C.等边三角形的内心,外心重合

D.一个圆一定有唯一一个外切三角形

5、观察如图推理过程,错误的是(???????)

A.因为的度数为,所以

B.因为,所以

C.因为垂直平分,所以

D.因为,所以

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.

2、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.

3、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

4、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.

5、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.

四、简答题(2小题,每小题10分,共计20分)

1、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.

(1)求甲、乙两种商品每箱各盈利多少元?

(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?

2、已知:如图,△ABC中,AB=AC,AB>BC.

求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.

作法:①以点A为圆心,AB长为半径画圆;

②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);

③连接BP交AC于点D.

线段BD就是所求作的线段.

(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

(2)完成下面的证明.

证明:连接PC.

∵AB=AC,

∴点C在⊙A上.

∵点P在⊙A上,

∴∠CPB=∠BAC.()(填推理的