山东省禹城市中考数学试题预测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()
A.12个 B.9个 C.6个 D.3个
2、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(???????)
A. B. C. D.
3、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()
A.120° B.125° C.130° D.135°
4、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()
A.50° B.60° C.40° D.30°
5、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1,则下列说法中正确的是(???????)
A.点火后1s和点火后3s的升空高度相同
B.点火后24s火箭落于地面
C.火箭升空的最大高度为145m
D.点火后10s的升空高度为139m
二、多选题(5小题,每小题3分,共计15分)
1、下列条件中,不能确定一个圆的是(???????)
A.圆心与半径 B.直径
C.平面上的三个已知点 D.三角形的三个顶点
2、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(???????)
A.方程的解为,;
B.当时,y随x的增大而增大;
C.若关于x的方程有三个解,则;
D.当时,函数的最大值为1.
3、在图所示的4个图案中不包含图形的旋转的是(???????)
A. B. C. D.
4、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(???????)
A.
B.当时,y随x的增大而增大
C.无论a取任何不为0的数,该函数的图象必经过定点
D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是
5、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)
A.4 B.6 C.8 D.10
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
2、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.
3、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.
4、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
四、简答题(2小题,每小题10分,共计20分)
1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.
求二次函数的解析式和直线的解析式;
点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.
2、如图,AB为⊙O直径,AC为弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点H,且∠D=2∠