基本信息
文件名称:2022山东省荣成市中考数学预测复习及答案详解.docx
文件大小:830.34 KB
总页数:34 页
更新时间:2025-05-29
总字数:约9.63千字
文档摘要

山东省荣成市中考数学预测复习

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()

A. B. C. D.

2、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()

A.7人 B.6人 C.5人 D.4人

3、下列说法中正确的是()

A.“打开电视,正在播放《新闻联播》”是必然事件

B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖

C.想了解某市城镇居民人均年收入水平,宜采用抽样调查

D.我区未来三天内肯定下雪

4、直线不经过第二象限,则关于的方程实数解的个数是(???).

A.0个 B.1个 C.2个 D.1个或2个

5、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()

A.个 B.个 C.个 D.个

二、多选题(5小题,每小题3分,共计15分)

1、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论中正确的结论是()

A.△BO′A可以由△BOC绕点B逆时针旋转60°得到

B.点O与O′的距离为4

C.∠AOB=150°

D.S四边形AOBO′=6+3

E.S△AOC+S△AOB=6+

2、下列四个说法中,不正确的是(???)

A.一元二次方程有实数根

B.一元二次方程有实数根

C.一元二次方程有实数根

D.一元二次方程x2+4x+5=a(a≥1)有实数根

3、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()

A. B. C.2 D.-2

4、下列方程中,有实数根的方程是()

A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0

C.3x2﹣2x﹣1=0 D.x2+2x+4=0

5、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(???????)

A. B. C.3 D.5

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)

①0<p<1-;???②1-<p<1;???③q<n;???④q>2k-k.

2、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.

3、若代数式有意义,则x的取值范围是_____.

4、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

5、如图,、分别与相切于A、B两点,若,则的度数为________.

四、简答题(2小题,每小题10分,共计20分)

1、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.

(1)求每个冰墩墩玩偶的进价;

(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.

①求w关于x的函数解析式,并求每周总利润的最大值;

②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.

2、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.

(1)求抛物线的解析式;

(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?

五、解答题(4小题,每小题10分,共计40分)

1、如图,四边