山东省莱州市中考数学自我提分评估
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、下列事件是随机事件的是()
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
2、从下列命题中,随机抽取一个是真命题的概率是(???????)
(1)无理数都是无限小数;
(2)因式分解;
(3)棱长是的正方体的表面展开图的周长一定是;
(4)两条对角线长分别为6和8的菱形的周长是40.
A. B. C. D.1
3、下列说法正确的是()
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(?????)
A. B.
C. D.
5、如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是(????????)
A.在⊙O内 B.在⊙O上 C.在⊙O外 D.以上都有可能
二、多选题(5小题,每小题3分,共计15分)
1、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(???????)
A.23 B.32 C. D.
2、对于二次函数y=﹣2(x﹣1)(x+3),下列说法不正确的是()
A.图象的开口向上
B.图象与y轴交点坐标是(0,6)
C.当x>﹣1时,y随x的增大而增大
D.图象的对称轴是直线x=1
3、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()
A.b2﹣4ac<0
B.当x>﹣1时,y随x增大而减小
C.a+b+c<0
D.若方程ax2+bx+c-m=0没有实数根,则m>2
E.3a+c<0
4、下列命题中,不正确的是(???????)
A.三点可确定一个圆
B.三角形的外心是三角形三边中线的交点
C.一个三角形有且只有一个外接圆
D.三角形的外心必在三角形的内部或外部
5、下列方程中,关于x的一元二次方程有(????????)
A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0
E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-9
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
2、到点的距离等于8厘米的点的轨迹是__.
3、某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
40
100
200
400
1000
“射中9环以上”的次数
15
33
78
158
321
801
“射中9环以下”的频率
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
4、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.
5、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.
四、简答题(2小题,每小题10分,共计20分)
1、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E
(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留).
2、根据下列条件,求二次函数的解析式.
(1)图象经过(0,1),(1,﹣2),(2,3)三点;
(2)图象的顶点(2,3),且经过点(3,1);
五、解答题(4小题,每小题10分,共计40分)
1、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点