浙江省海宁市中考数学自我提分评估
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、一元二次方程x2-3x+1=0的根的情况是(???????).
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()
A. B.1 C.2 D.
3、下列事件是确定事件的是()
A.方程有实数根 B.买一张体育彩票中大奖
C.抛掷一枚硬币正面朝上 D.上海明天下雨
4、下列图形中,是中心对称图形,但不是轴对称图形的是()
A. B. C. D.
5、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()
A. B.四边形EFGH是菱形
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、对于二次函数,下列说法不正确的是(???????)
A.图像开口向下
B.图像的对称轴是直线
C.函数最大值为0
D.随的增大而增大
2、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(???????)
A.或 B. C. D.不存在
3、下列说法不正确的是(???????)
A.经过三个点有且只有一个圆
B.经过两点的圆的圆心是这两点连线的中点
C.钝角三角形的外心在三角形外部
D.等腰三角形的外心即为其中心
4、已知二次函数y=x2-4x+a,下列说法正确的是()
A.当x<1时,y随x的增大而减小
B.若图象与x轴有交点,则a≥-4
C.当a=3时,不等式x2-4x+a<0的解集是1<x<3
D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3
5、下列说法中,不正确的是(???????)
A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心
D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.
2、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
3、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.
4、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.
5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.
四、简答题(2小题,每小题10分,共计20分)
1、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售;