基本信息
文件名称:人教版数学八年级上册课件--三角形全等的判定(第1课时).pptx
文件大小:10.84 MB
总页数:39 页
更新时间:2025-05-29
总字数:约6.9千字
文档摘要

12.2三角形全等的判定(第1课时)人教版八年级数学上册

12.2三角形全等的判定(第1课时)人教版八年级数学上册数学人教版八年级上册授课人:XXX

为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?导入新知

3.掌握用尺规作一个角等于已知角的作图法.1.探索三角形全等条件,明确探索方向和过程.2.掌握“边边边”判定方法和应用.素养目标

1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.全等三角形有什么性质?全等三角形的对应边相等,对应角相等.探究新知知识点1三角形全等的判定——“边边边”定理温故知新

ABCDEF3.已知△ABC≌△DEF,找出其中相等的边与角.①AB=DE③CA=FD②BC=EF④∠A=∠D⑤∠B=∠E⑥∠C=∠F探究新知温故知新即:三条边分别相等,三个角分别相等的两个三角形全等.

【思考】如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?探究新知只给一个条件①只给一条边时;②只给一个角时;3cm3cm45?45?结论:只有一条边或一个角对应相等的两个三角形不一定全等.

①两边;③两角.②一边一角;如果满足两个条件,你能说出有哪几种可能的情况?探究新知

①如果三角形的两边分别为3cm,4cm时,4cm4cm3cm3cm结论:两条边对应相等的两个三角形不一定全等.探究新知

②三角形的一条边为4cm,一个内角为30°时:4cm4cm30?30?结论:一条边一个角对应相等的两个三角形不一定全等.探究新知

45?30?45?30?③如果三角形的两个内角分别是30°,45°时结论:两个角对应相等的两个三角形不一定全等.探究新知根据三角形的内角和为180°,则第三角一定确定,所以当三个内角对应相等时,两个三角形不一定全等.

两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.一个条件①一角;②一边;探究新知归纳总结

①三角;②三边;③两边一角;④两角一边.如果满足三个条件,你能说出有哪几种可能的情况?探究新知

已知两个三角形的三个内角分别为30°,60°,90°它们一定全等吗?这说明有三个角对应相等的两个三角形不一定全等.①三个角探究新知

已知两个三角形的三条边都分别为3cm、4cm、6cm.它们一定全等吗?3cm4cm6cm4cm6cm3cm6cm4cm3cm②三条边探究新知

先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ABCA′B′C′作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?作法:(1)画B′C′=BC;(2)分别以B,C为圆心,线段AB,AC长为半径画圆,两弧相交于点A;(3)连接线段AB,AC.探究新知做一做想一想

文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)ABCDEF在△ABC和△DEF中,∴△ABC≌△DEF(SSS).AB=DE,BC=EF,CA=FD,几何语言:探究新知“边边边”判定方法

例1如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:(1)△ABD≌△ACD.CBDA解题思路:先找隐含条件公共边AD再找现有条件AB=AC最后找准备条件BD=CDD是BC的中点探究新知利用“边边边”定理判定三角形全等素养考点1

证明:∵D是BC中点,∴BD=DC.在△ABD与△ACD中,∴△ABD≌△ACD(SSS).CBDAAB=AC(已知)BD=CD(已证)AD=AD(公共边)准备条件指明范围摆齐根据写出结论(2)∠BAD=∠CAD.由(1)得△ABD≌△ACD,∴∠BAD=∠CAD.(全等三角形对应角相等)探究新知

①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;④写出结论:写出全等结论.证明的书写步骤:探究新知归纳总结

如图,C是BF的中点,AB=DC,AC=DF.求证:△ABC≌△DCF.在△ABC和△DCF中,AB=DC,∴△ABC≌△DCF(已知)(已证)AC=DF,BC=