基本信息
文件名称:2022年浙江省桐乡市中考数学复习提分资料附完整答案详解【历年真题】.docx
文件大小:565.87 KB
总页数:25 页
更新时间:2025-05-29
总字数:约8.11千字
文档摘要

浙江省桐乡市中考数学复习提分资料

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,已知是的两条切线,A,B为切点,线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心,其中正确说法的个数是(???????)

A.1 B.2 C.3 D.4

2、下列事件中,是必然事件的是()

A.实心铁球投入水中会沉入水底

B.车辆随机到达一个路口,遇到红灯

C.打开电视,正在播放《大国工匠》

D.抛掷一枚硬币,正面向上

3、下列图形中,既是轴对称图形,又是中心对称图形的是()

A. B. C. D.

4、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()

A. B. C. D.

5、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()

A.1 B.﹣2 C.﹣1 D.2

二、多选题(5小题,每小题3分,共计15分)

1、若为圆内接四边形,则下列哪个选项可能成立(???????)

A. B.

C. D.

2、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(???????)

A.CE平分∠ACB B. C.E是△PAB的内心 D.

3、下列语句中不正确的有(???????)

A.等弧对等弦 B.等弦对等弧

C.相等的圆心角所对的弧相等 D.长度相等的两条弧是等弧

4、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(???????)

A.

B.

C.若,是抛物线上的两点,则

D.关于x的方程无实数根

5、下列命题中,不正确的是(???????)

A.三点可确定一个圆

B.三角形的外心是三角形三边中线的交点

C.一个三角形有且只有一个外接圆

D.三角形的外心必在三角形的内部或外部

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.

2、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.

3、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.

4、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.

5、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.

四、简答题(2小题,每小题10分,共计20分)

1、已知抛物线y=mx2-2mx-3.

(1)若抛物线的顶点的纵坐标是-2,求此时m的值;

(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.

2、小明和小丽先后从A地出发同一直道去B地,设小丽出发第时,小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是.

(1)小丽出发时,小明离A地的距离为.

(2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?

五、解答题(4小题,每小题10分,共计40分)

1、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.

(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;

(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.

2、在平面直角坐标系中,设二次函数(m是实数).

(1)当时,若点在该函数图象上,求n的值.

(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?

(3)已知点,都在该二次函数图象上,求证:.

3、解方程

(1)(x+1)2﹣64=0

(2)x2﹣4x+