基本信息
文件名称:2022年河北省南宫市中考数学复习提分资料【全国通用】附答案详解.docx
文件大小:568.31 KB
总页数:25 页
更新时间:2025-05-29
总字数:约8.2千字
文档摘要

河北省南宫市中考数学复习提分资料

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、从下列命题中,随机抽取一个是真命题的概率是(???????)

(1)无理数都是无限小数;

(2)因式分解;

(3)棱长是的正方体的表面展开图的周长一定是;

(4)两条对角线长分别为6和8的菱形的周长是40.

A. B. C. D.1

2、若关于x的二次函数y=ax2+bx的图象经过定点(1,1),且当x<﹣1时y随x的增大而减小,则a的取值范围是()

A. B. C. D.

3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()

A.2个 B.3个 C.4个 D.5个

4、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()

A.12个 B.9个 C.6个 D.3个

5、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()

A. B. C.5 D.5

二、多选题(5小题,每小题3分,共计15分)

1、下列方程中,有实数根的方程是()

A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0

C.3x2﹣2x﹣1=0 D.x2+2x+4=0

2、如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(???????)

A.射线一定过点O B.点O是三条中线的交点

C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点

3、下列方程中,关于x的一元二次方程有(????????)

A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0

E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-9

4、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(???????)

A.

B.当时,y随x的增大而增大

C.无论a取任何不为0的数,该函数的图象必经过定点

D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是

5、以图①(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图②的有(???????)

A.只要向右平移1个单位 B.先以直线为对称轴进行翻折,再向右平移1个单位

C.先绕着点O旋转,再向右平移1个单位 D.绕着的中点旋转即可

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.

2、一个五边形共有__________条对角线.

3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.

4、抛物线的开口方向向______.

5、两直角边分别为6、8,那么的内接圆的半径为____________.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.

2、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.

(1)求每个冰墩墩玩偶的进价;

(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.

①求w关于x的函数解析式,并求每周总利润的最大值;

②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.

五、解答题(4小题,每小题10分,共计40分)

1、已知抛物线.

(1)该抛物线的对称轴为;

(2)若该抛物线的顶点在x轴上,求抛物线的解析式;

(3)设点M(m,),N(2,)在该抛物线上,若>,求m的取值范围.

2、新冠病毒在