基本信息
文件名称:2023年河北省南宫市中考数学预测复习附答案详解【预热题】.docx
文件大小:509.01 KB
总页数:28 页
更新时间:2025-05-29
总字数:约1.01万字
文档摘要

河北省南宫市中考数学预测复习

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、7个小正方体按如图所示的方式摆放,则这个图形的左视图是()

A.B. C.D.

2、下列事件是必然发生的事件是()

A.在地球上,上抛的篮球一定会下落

B.明天的气温一定比今天高

C.中秋节晚上一定能看到月亮

D.某彩票中奖率是1%,买100张彩票一定中奖一张

3、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为()

A. B. C. D.

4、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(???????)

A.m<1 B.m<1且m≠-1

C.m>1 D.-1<m<1

5、二次函数的图像如图所示,现有以下结论:(1):(2);(3),(4);(5);其中正确的结论有(???????)

A.2个 B.3个 C.4个 D.5个.

二、多选题(5小题,每小题3分,共计15分)

1、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()

A.4a+b=0

B.9a+c>﹣3b

C.7a﹣3b+2c>0

D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2

E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2

2、下列命题正确的是(???????)

A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心

C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦

3、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)

A.

B.

C.若关于x的方程有实数根,则

D.若和是抛物线上的两点,则当时,

4、在图所示的4个图案中不包含图形的旋转的是(???????)

A. B. C. D.

5、下列方程中,是一元二次方程的是(???????)

A. B.

C. D.

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为___________.

2、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

3、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.

4、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.

5、某射击运动员在同一条件下的射击成绩记录如下:

射击次数

20

40

100

200

400

1000

“射中9环以上”的次数

15

33

78

158

321

801

“射中9环以下”的频率

通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).

四、简答题(2小题,每小题10分,共计20分)

1、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售;单价每千克降低一元,日均多售.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).

(1)如果日均获利1950元,求销售单价;

(2)销售单价为多少时,可获得最大利润?最大利润为多少.

2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).

(1)当t为何值时,四边形PQCD为平行四边形?

(2)当t为何值时,PQ与⊙O相