山东省肥城市中考数学基础强化
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()
A. B.1 C.2 D.
2、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()
A.数字之和是0的概率为0 B.数字之和是正数的概率为
C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同
3、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(???????)
A. B. C. D.
4、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()
A. B. C. D.
5、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()
A. B. C. D.8
二、多选题(5小题,每小题3分,共计15分)
1、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)
A.4 B.6 C.8 D.10
2、如图,在的网格中,点,,,,均在网格的格点上,下面结论正确的有(???????)
A.点是的外心 B.点是的外心
C.点是的外心 D.点是的外心
3、下列命题正确的是(???????)
A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心
C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦
4、下列方程中是一元二次方程的有(????????)
A.
B.
C.
D.
E.
F.
5、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(???????)
A. B.
C. D.时,方程有解
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是________.
2、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
3、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
4、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.
5、如图,、分别与相切于A、B两点,若,则的度数为________.
四、简答题(2小题,每小题10分,共计20分)
1、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?
2、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.
(1)求反比例函数和一次函数的解析式;
(2)求一次函数与反比例函数图象的两个交点A,C的坐标.
五、解答题(4小题,每小题10分,共计40分)
1、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:
直接写出与的函数关系式,并注明自变量的取值范围;
设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;
由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态
2、受“新冠”疫情的影响,某销售商在网上销售A、B两种