基本信息
文件名称:2022年云南省安宁市中考数学综合提升测试卷及完整答案详解【名校卷】.docx
文件大小:455.4 KB
总页数:27 页
更新时间:2025-05-29
总字数:约8.81千字
文档摘要

云南省安宁市中考数学综合提升测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(???????)

A. B.

C. D.

2、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(???????)

A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850

C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+2000

3、二次函数的图像如图所示,现有以下结论:(1):(2);(3),(4);(5);其中正确的结论有(???????)

A.2个 B.3个 C.4个 D.5个.

4、对于抛物线,下列说法正确的是()

A.抛物线开口向上

B.当时,y随x增大而减小

C.函数最小值为﹣2

D.顶点坐标为(1,﹣2)

5、如图是由5个相同的小正方体搭成的几何体,它的左视图是().

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、下列方程不适合用因式方程解法解的是(???????)

A.x2-3x+2=0 B.2x2=x+4

C.(x-1)(x+2)=70 D.x2-11x-10=0

2、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:

t

0

1

2

3

4

5

6

7

h

0

8

14

18

20

20

18

14

下列结论正确的是(???????)A.足球距离地面的最大高度为20m

B.足球飞行路线的对称轴是直线

C.足球被踢出9s时落地

D.足球被踢出1.5s时,距离地面的高度是11m

3、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(?????)

A. B. C. D.

4、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(?????)

A. B.

C. D.

5、下列方程一定不是一元二次方程的是(???????)

A. B.

C. D.

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.

2、在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a时,y有最大值7,最小值3,则a的取值范围是_____.

3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

4、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_________.

5、一元二次方程的解为__________.

四、简答题(2小题,每小题10分,共计20分)

1、新冠肺炎疫情期间,我国各地采取了多种方式进行预防.其中,某地运用无人机规劝居民回家.如图,无人机于空中A处测得某建筑顶部B处的仰角为,测得该建筑底部C处的俯角为.若无人机的飞行高度为,求该建筑的高度(结果取整数),参考数据:,,.

2、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.

(1)求反比例函数解析式;

(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;

(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

五、解答题(4小题,每小题10分,共计40分)

1、小明每天骑自