基本信息
文件名称:2022年广东省高州市中考数学题库及参考答案详解【考试直接用】.docx
文件大小:720.77 KB
总页数:31 页
更新时间:2025-05-29
总字数:约9.39千字
文档摘要

广东省高州市中考数学题库

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()

A. B. C. D.

2、若点P(2,)与点Q(,)关于原点对称,则m+n的值分别为(????????????)

A. B. C.1 D.5

3、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()

A. B.四边形EFGH是菱形

C. D.

4、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()

A.AM=BM B.CM=DM C. D.

5、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D.若矩形OCPD的面积为1时,则点P的坐标为()

A.(,3) B.(,2)

C.(,2)和(1,1) D.(,3)和(1,1)

二、多选题(5小题,每小题3分,共计15分)

1、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(???????)

A. B. C. D.旋转角为

2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(????????)

A.A、B关于x轴对称; B.A、B关于y轴对称;

C.A、B关于原点对称; D.若A、B之间的距离为4

3、对于二次函数y=﹣2(x﹣1)(x+3),下列说法不正确的是()

A.图象的开口向上

B.图象与y轴交点坐标是(0,6)

C.当x>﹣1时,y随x的增大而增大

D.图象的对称轴是直线x=1

4、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(???????)

A. B. C. D.

5、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是(???????)组,进行轴对称变换的是(???????).

A. B. C. D.

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:

①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有_____(填写所有正确结论的序号).

2、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.

3、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.

4、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.

5、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.

四、简答题(2小题,每小题10分,共计20分)

1、如图,抛物线与轴交于两点,与轴交于点,且,.

(1)求抛物线的表达式;

(2)点是抛物线上一点.

①在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;

②连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由.

2、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.

(1)求二次函数的解析式;

(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直