基本信息
文件名称:2023年河南省义马市中考数学通关题库(考点精练)附答案详解.docx
文件大小:516.41 KB
总页数:30 页
更新时间:2025-05-29
总字数:约8.5千字
文档摘要

河南省义马市中考数学通关题库

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是(???????)

A. B. C. D.

2、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()

A.105° B.120° C.135° D.150°

3、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为()

A.3 B.1 C. D.

4、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()

A.120° B.125° C.130° D.135°

5、下列图形中,既是中心对称图形也是轴对称图形的是()

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()

A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0

2、下列说法中,正确的有()

A.等弧所对的圆心角相等

B.经过三点可以作一个圆

C.平分弦的直径垂直于这条弦

D.圆的内接平行四边形是矩形

3、关于x的一元二次方程(k-1)x2+4x+k-1=0有两个相等的实数根,则k的值为(???????)

A.1 B.0 C.3 D.-3

4、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(?????)

A. B.

C. D.

5、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)

A.

B.

C.若关于x的方程有实数根,则

D.若和是抛物线上的两点,则当时,

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、抛物线的图象和轴有交点,则的取值范围是______.

2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.

3、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_____.

4、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为______________.

5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:

(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;

(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.

四、简答题(2小题,每小题10分,共计20分)

1、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.

2、已知==,求的值.

五、解答题(4小题,每小题10分,共计40分)

1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.

(1)求∠ABD的度数;

(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;

(3)在(2)的条件下,求的长.

2、某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.

(1)求y与x的函数表达式;

(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?

3、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.

(1)求证:

①BC是⊙O的切线;

②;

(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.

4、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,