基本信息
文件名称:2022年吉林省扶余市中考数学试卷附完整答案详解【历年真题】.docx
文件大小:1.04 MB
总页数:31 页
更新时间:2025-05-29
总字数:约8.92千字
文档摘要

吉林省扶余市中考数学试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,AB,CD是⊙O的弦,且,若,则的度数为()

A.30° B.40° C.45° D.60°

2、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(???????)

A. B. C. D.

3、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(?????).

A.50° B.40° C.70° D.30°

4、下列图形中,既是轴对称图形,又是中心对称图形的是()

A. B. C. D.

5、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()

A.不变 B.面积扩大为原来的3倍

C.面积扩大为原来的9倍 D.面积缩小为原来的

二、多选题(5小题,每小题3分,共计15分)

1、下列说法中,正确的有()

A.等弧所对的圆心角相等

B.经过三点可以作一个圆

C.平分弦的直径垂直于这条弦

D.圆的内接平行四边形是矩形

2、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(???????)

A.或 B. C. D.不存在

3、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()

A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17

4、下列关于x的方程没有实数根的是(????????)

A.x2-x+1=0 B.x2+x+1=0

C.(x-1)(x+2)=0 D.(x-1)2+1=0

5、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(???????)

A.

B.

C.若,是抛物线上的两点,则

D.关于x的方程无实数根

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)

2、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

3、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)

①0<p<1-;???②1-<p<1;???③q<n;???④q>2k-k.

4、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_________.

5、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.

(1)直接写出的长(用含的代数式表示);

(2)当点落在的边上时,求的值;

(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;

(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.

2、根据下列条件,求二次函数的解析式.

(1)图象经过(0,1),(1,﹣2),(2,3)三点;

(2)图象的顶点(2,3),且经过点(3,1);

五、解答题(4小题,每小题10分,共计40分)

1、综合与实践

“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆