广东省高州市中考数学常考点试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(???????)
A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+2000
2、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()
A. B. C. D.
3、下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
4、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()
A. B. C. D.
5、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()
A.50° B.60° C.40° D.30°
二、多选题(5小题,每小题3分,共计15分)
1、在图形旋转中,下列说法正确的是(??????????)
A.在图形上的每一点到旋转中心的距离相等
B.图形上每一点转动的角度相同
C.图形上可能存在不动的点
D.图形上任意两点的连线与其对应两点的连线长度相等
2、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(???????)
A. B.
C. D.关于的方程有两个不等的实数根
3、下列说法不正确的是(???????)
A.经过三个点有且只有一个圆
B.经过两点的圆的圆心是这两点连线的中点
C.钝角三角形的外心在三角形外部
D.等腰三角形的外心即为其中心
4、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()
A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17
5、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(?????)
A. B.
C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.
2、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.
3、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.
4、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.
5、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为______.
四、简答题(2小题,每小题10分,共计20分)
1、据说,在距今2500多年前,古希腊数学家就已经较准确地测出了埃及金字塔的高度,操作过程大致如下:如图所示,设AB是金字塔的高,在某一时刻,阳光照射下的金字塔在底面上投下了一个清晰的阴影,塔顶A的影子落在地面上的点C处,金字塔底部可看作方正形FGHI,测得正方形边长FG长为160米,点B在正方形的中心,BC与金字塔底部一边垂直于点K,与此同时,直立地面上的一根标杆DO留下的影子是OE,射向地面的太阳光线可看作平行线(AC∥DE),此时测得标杆DO长为1.2米,影子OE长为2.7米,KC长为250米,求金字塔的高度AB及斜坡AK的坡度(结果均保留四个有效数字)
2、(1)方法导引:
问题:如图1,等边三角形的边长为6,点是和的角平分线交点,,绕点任意旋转,分别交的两边于,两点.求四边形面积.
讨论:
①小明:在旋转过程中,当经过点时,一定经过点.
②小颖:小明的分析有道理,这样我们就可以利用“”证出.
③小飞:因为,所以只要算出的面积就得出了四边形的面积.
老师:同学们的思路很清晰,也很正确.在分析和解决问题时,我们经常会借用特例作辅助线来