云南省文山市中考数学真题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()
A.2个 B.3个 C.4个 D.5个
2、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(???????)
A.m<1 B.m<1且m≠-1
C.m>1 D.-1<m<1
3、下列方程:①;②;③;④;⑤.是一元二次方程的是(???????)
A.①② B.①②④⑤ C.①③④ D.①④⑤
4、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()
A.5 B.4.5 C.4 D.0
5、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()
A. B. C.2 D.-2
2、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
3、在中,,,且关于x的方程有两个相等的实数根,以下结论正确的是(???????)
A.AC边上的中线长为1 B.AC边上的高为
C.BC边上的中线长为 D.外接圆的半径是2
4、若为圆内接四边形,则下列哪个选项可能成立(???????)
A. B.
C. D.
5、已知关于的方程,下列说法不正确的是(???????)
A.当时,方程无解 B.当时,方程有两个相等的实数根
C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).
2、二次函数的最大值是__________.
3、已知关于的一元二次方程,有下列结论:
①当时,方程有两个不相等的实根;
②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.
以上4个结论中,正确的个数为_________.
4、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
5、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_____.
四、简答题(2小题,每小题10分,共计20分)
1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.
(1)求二次函数的解析式;
(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.
2、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.
五、解答题(4小题,每小题10分,共计40分)
1、如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标.???????
(2)点在该二次函数图象上.???
①当时,求的值;
②若到轴的距离小于2,请根据图象直接写出的取值范围.
2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.
(1)图1中的“弦图”的四个直角三角形组成