基本信息
文件名称:2023年海南省东方市中考数学经典例题及参考答案详解(满分必刷).docx
文件大小:558.81 KB
总页数:28 页
更新时间:2025-05-29
总字数:约8.54千字
文档摘要

海南省东方市中考数学经典例题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()

A.60 B.90 C.120 D.180

2、平面直角坐标系中点关于原点对称的点的坐标是()

A. B. C. D.

3、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.

A.1 B.2 C.3 D.4

4、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()

A. B. C. D.

5、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(???????)

A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)

B.图形C3上任意一点到原点的最大距离是1

C.图形C3的周长大于2π

D.图形C3所围成区域的面积大于2且小于π

2、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()

A.b2﹣4ac<0

B.当x>﹣1时,y随x增大而减小

C.a+b+c<0

D.若方程ax2+bx+c-m=0没有实数根,则m>2

E.3a+c<0

3、如图所示,二次函数的图象的一部分,图像与x轴交于点.下列结论中正确的是(???????)

A.抛物线与x轴的另一个交点坐标是

B.

C.若抛物线经过点,则关于x的一元二次方程的两根分别为,5

D.将抛物线向左平移3个单位,则新抛物线的表达式为

4、下列说法中,不正确的是()

A.三点确定一个圆

B.三角形有且只有一个外接圆

C.圆有且只有一个内接三角形

D.相等的圆心角所对的弧相等

5、观察如图推理过程,错误的是(???????)

A.因为的度数为,所以

B.因为,所以

C.因为垂直平分,所以

D.因为,所以

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、在圆内接四边形ABCD中,,则的度数为______.

2、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是__________.

3、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.

4、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.

5、已知关于的一元二次方程,有下列结论:

①当时,方程有两个不相等的实根;

②当时,方程不可能有两个异号的实根;

③当时,方程的两个实根不可能都小于1;

④当时,方程的两个实根一个大于3,另一个小于3.

以上4个结论中,正确的个数为_________.

四、简答题(2小题,每小题10分,共计20分)

1、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E

(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留).

2、(1)阅读理解

如图,点,在反比例函数的图象上,连接,取线段的中点.分别过点,,作轴的垂线,垂足为,,,交反比例函数的图象于点.点,,的横坐标分别为,,.小红通过观察反比例函数的图象,并运用几何知识得出结论:AE+BG=2CF,CFDF,由此得出一个关于,,之间数量关系的命题:若,则______.

(2)证明命题

小东认为:可以通过“若,则”的思路证明上述命题.

小晴认为:可以通过“若,,且,则”的思路证明上述命题.

请你选择一种方法证明(1)中的命题.

五、解答题(4小题,每小题10分,共计40分)

1、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.

(1)