山东省诸城市中考数学测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(???????)
A.(﹣1,0)和(5,0) B.(1,0)和(5,0)
C.(0,﹣1)和(0,5) D.(0,1)和(0,5)
2、如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(???)
A.π B.π C.π D.2
3、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()
A. B. C. D.
4、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(???)
A.相交 B.相离 C.相切 D.无法判断
5、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()
A. B.1 C.2 D.
二、多选题(5小题,每小题3分,共计15分)
1、下列方程不适合用因式方程解法解的是(???????)
A.x2-3x+2=0 B.2x2=x+4
C.(x-1)(x+2)=70 D.x2-11x-10=0
2、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)
A.
B.
C.若关于x的方程有实数根,则
D.若和是抛物线上的两点,则当时,
3、对于二次函数,下列说法不正确的是(???????)
A.图像开口向下
B.图像的对称轴是直线
C.函数最大值为0
D.随的增大而增大
4、如图,二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,下列结论正确的是(???????)
A.a+b+c<0
B.abc<0
C.2a+b=0
D.若P(﹣6,y1),Q(m,y2)是抛物线上两点,且y1>y2,则﹣6<m<4
5、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(???)
A. B. C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.
2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
3、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.
4、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.
5、到点的距离等于8厘米的点的轨迹是__.
四、简答题(2小题,每小题10分,共计20分)
1、如图,矩形在平面直角坐标系中,交轴于点,动点从原点出发,以每秒1个单位长度的速度沿轴正方向移动,移动时间为秒,过点P作垂直于轴的直线,交于点M,交或于点N,直线扫过矩形的面积为.
(1)求点的坐标;
(2)求直线移动过程中到点之前的关于的函数关系式;
(3)在直线移动过程中,第一象限的直线上是否存在一点,使是等腰直角三角形?若存在,直接写出点的坐标;若不存在,说明理由
2、五一期间,小明跟父母去乌镇旅游,欣赏乌镇水乡的美景.如图,当小明走到乌镇古桥的C处时,发现远处有一瞍船匀速行驶过来,当船行驶到A处时,小明测得船头的俯角为30°,同时小明开始计时,船在航行过小明所在的桥之后,继续向前航行到达B处,此时测得船尾的俯角为45°;从小明开始计时到船行驶至B处,共用时15min;已知小明所在位置距离水面6m,船长3m,船到水面的距离忽略不计,请你帮助小明计算一下船的航行速度(结果保留根号)
五、解答题(4小题,每小题10分,共计40分)
1、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时