河南省登封市中考数学模考模拟试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(???)
A.相交 B.相离 C.相切 D.无法判断
2、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为()
A.140° B.100° C.80° D.40°
3、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()
A. B. C. D.
4、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()
A.3 B. C. D.
5、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
…
-2
0
1
3
…
…
6
-4
-6
-4
…
下列各选项中,正确的是A.这个函数的图象开口向下
B.这个函数的图象与x轴无交点
C.这个函数的最小值小于-6
D.当时,y的值随x值的增大而增大
二、多选题(5小题,每小题3分,共计15分)
1、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(???????)
A.
B.
C.
D.若(-5,),(2,)是抛物线上两点,则
2、已知点,下面的说法正确的是(???)
A.点与点关于轴对称,则点的坐标为
B.点绕原点按顺时针方向旋转后到点,则点的坐标为
C.点与点关于原点中心对称,则点的坐标为
D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为
3、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)
A.4 B.6 C.8 D.10
4、如图,二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,下列结论正确的是(???????)
A.a+b+c<0
B.abc<0
C.2a+b=0
D.若P(﹣6,y1),Q(m,y2)是抛物线上两点,且y1>y2,则﹣6<m<4
5、下列命题正确的是(???????)
A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心
C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、已知函数y的图象如图所示,若直线y=kx﹣3与该图象有公共点,则k的最大值与最小值的和为_____.
2、如图,、分别与相切于A、B两点,若,则的度数为________.
3、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.
4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.
四、简答题(2小题,每小题10分,共计20分)
1、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.
(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.
(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.
2、如图,矩形ABCD中,AB=6cm,BC=12cm..点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动.若M,N分别从A,B点同时出发,设移动时间为t(0t6),△DMN的面积为S.
(1)求S关于t的函数关系式,并求出S的最小值;
(2)当△DMN为直角三角形时,求△DMN的面积.
五、解答题(4小题,每小题10分,共计40分)
1、如图,已知