基本信息
文件名称:2023年河北省新乐市中考数学达标测试附答案详解.docx
文件大小:855.71 KB
总页数:35 页
更新时间:2025-05-29
总字数:约9.7千字
文档摘要

河北省新乐市中考数学达标测试

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()

A.105° B.120° C.135° D.150°

2、如果,那么的结果是(???????)

A. B. C. D.

3、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()

A. B. C. D.

4、下列图形中,是中心对称图形,但不是轴对称图形的是()

A. B. C. D.

5、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(???????)

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(???????)

A. B.

C. D.关于的方程有两个不等的实数根

2、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:

x

-1

0

1

2

3

y

3

0

-1

m

3

①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)

A.① B.② C.③ D.④

3、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()

A.b2﹣4ac<0

B.当x>﹣1时,y随x增大而减小

C.a+b+c<0

D.若方程ax2+bx+c-m=0没有实数根,则m>2

E.3a+c<0

4、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()

A. B.

C. D.

5、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)

A. B. C. D.是的切线

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.

2、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

3、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.

4、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

5、如图,、分别与相切于A、B两点,若,则的度数为________.

四、简答题(2小题,每小题10分,共计20分)

1、内接于⊙O,在劣弧上,连交于,连,.

(1)如图1,求证:;

(2)如图2,平分,求证:;

(3)如图3,在(2)条件下,点在延长线上,连,于,,,,求⊙O半径的长.

2、如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点;

(1)求抛物线的解析式;

(2)点为轴上一点,点为直线上一点,过作交轴于点,当四边形为菱形时,请直接写出点坐标;

(3)在(2)的条件下,且点在线段上时,将抛物线向上平移个单位,平移后的抛物线与直线交于点(点在第二象限),点为轴上一点,若,且符合条件的点恰好有2个,求的取值范围.

五、解答题(4小题,每小题10分,共计40分)

1、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3个座位上.

(1)甲坐在①号座位的概率是;

(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.

2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.

(1)求A,B两点的坐标;

(2