基本信息
文件名称:2022福建省武夷山市中考数学试卷含完整答案详解(名校卷).docx
文件大小:558.93 KB
总页数:26 页
更新时间:2025-05-29
总字数:约8.95千字
文档摘要

福建省武夷山市中考数学试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、平面直角坐标系中点关于原点对称的点的坐标是()

A. B. C. D.

2、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为()

A.1 B.2 C.3 D.4

3、从下列命题中,随机抽取一个是真命题的概率是(???????)

(1)无理数都是无限小数;

(2)因式分解;

(3)棱长是的正方体的表面展开图的周长一定是;

(4)两条对角线长分别为6和8的菱形的周长是40.

A. B. C. D.1

4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()

A.平移 B.翻折 C.旋转 D.以上三种都不对

5、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为()

A.4 B. C. D.1

二、多选题(5小题,每小题3分,共计15分)

1、已知二次函数y=x2-4x+a,下列说法正确的是()

A.当x<1时,y随x的增大而减小

B.若图象与x轴有交点,则a≥-4

C.当a=3时,不等式x2-4x+a<0的解集是1<x<3

D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3

2、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(???????)

A. B. C. D.旋转角为

3、下列四个命题中正确的是(???????)

A.与圆有公共点的直线是该圆的切线

B.垂直于圆的半径的直线是该圆的切线

C.到圆心的距离等于半径的直线是该圆的切线

D.过圆直径的端点,垂直于此直径的直线是该圆的切线

4、下列命题正确的是(???????)

A.菱形既是中心对称图形又是轴对称图形

B.的算术平方根是5

C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形

D.如果方程有实数根,则实数

5、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(???????)

A.

B.

C.若,是抛物线上的两点,则

D.关于x的方程无实数根

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为______.

2、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.

3、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.

4、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.

5、已知抛物线与x轴的一个交点为,则代数式的值为______.

四、简答题(2小题,每小题10分,共计20分)

1、如图,已知中,,点在边上,满足

求证:(1)(2).

2、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.

(1)求抛物线的解析式;

(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?

五、解答题(4小题,每小题10分,共计40分)

1、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.

2、已知关于x的一元二次方程.

(1)求证:不论m取何值,方程总有两个不相等的实数根;

(2)若方程有两个实数根为,,且,求m的值.

3、为帮助人民应对疫情,某药厂下调