基本信息
文件名称:2022年吉林省临江市中考数学预测复习含完整答案详解【名校卷】.docx
文件大小:701.36 KB
总页数:28 页
更新时间:2025-05-29
总字数:约9.32千字
文档摘要

吉林省临江市中考数学预测复习

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、下列说法正确的是()

A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.

B.若AC、BD为菱形ABCD的对角线,则的概率为1.

C.概率很小的事件不可能发生.

D.通过少量重复试验,可以用频率估计概率.

2、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()

A. B. C. D.8

3、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()

A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000

C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=3000

4、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()

A.1cm B.2cm C.2cm D.4cm

5、如图,该几何体的左视图是()

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(???????)

A.CE平分∠ACB B. C.E是△PAB的内心 D.

2、观察如图推理过程,错误的是(???????)

A.因为的度数为,所以

B.因为,所以

C.因为垂直平分,所以

D.因为,所以

3、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(???????)

A.方程的解为,;

B.当时,y随x的增大而增大;

C.若关于x的方程有三个解,则;

D.当时,函数的最大值为1.

4、下列命题正确的是(???????)

A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心

C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦

5、对于二次函数,下列说法不正确的是(???????)

A.图像开口向下

B.图像的对称轴是直线

C.函数最大值为0

D.随的增大而增大

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

2、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.

3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.

4、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

5、关于的一元二次方程的一个根是2,则另一个根是__________.

四、简答题(2小题,每小题10分,共计20分)

1、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.

(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____

(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:

(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.

2、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.

(1)求证:CB∥PD;

(2)若∠ABC=55°,求∠P的度数.

五、解答题(4小题,每小题10分,共计40分)

1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△ABC.(需写出△ABC各顶点的坐标).

2、如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐