广东省高州市中考数学全真模拟模拟题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()
A. B.
C. D.
2、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是()
A. B. C. D.
3、如图,在中,为的直径,和相切于点E,和相交于点F,已知,,则的长为(???????)
A. B. C. D.2
4、如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(???)
A.π B.π C.π D.2
5、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()
A.数字之和是0的概率为0 B.数字之和是正数的概率为
C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同
二、多选题(5小题,每小题3分,共计15分)
1、已知点,下面的说法正确的是(???)
A.点与点关于轴对称,则点的坐标为
B.点绕原点按顺时针方向旋转后到点,则点的坐标为
C.点与点关于原点中心对称,则点的坐标为
D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为
2、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(???????)
A. B.
C. D.劣弧是劣弧的2倍
3、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()
A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17
4、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)
A. B. C. D.是的切线
5、下列说法不正确的是(???????)
A.经过三个点有且只有一个圆
B.经过两点的圆的圆心是这两点连线的中点
C.钝角三角形的外心在三角形外部
D.等腰三角形的外心即为其中心
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.
2、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
3、如果关于的一元二次方程的一个解是,那么代数式的值是___________.
4、写出一个一元二次方程,使它有两个不相等的实数根______.
5、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
四、简答题(2小题,每小题10分,共计20分)
1、如图,矩形ABCD中,AB=6cm,BC=12cm..点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动.若M,N分别从A,B点同时出发,设移动时间为t(0t6),△DMN的面积为S.
(1)求S关于t的函数关系式,并求出S的最小值;
(2)当△DMN为直角三角形时,求△DMN的面积.
2、如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).
(1)求该抛物线的解析式;
(2)若直线y=kx(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;
(3)当﹣4<x≤m时,y有最大值,求m的值.
五、解答题(4小题,每小题10分,共计40分)
1、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.
(1)求证:是切线;
(2)若,,求的半径和的长.
2、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.
求二次函数的解析式和直线的解析式;
点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
在抛物线上是否存在异于、的点,使中边