高数下试题及答案
一、单项选择题(每题2分,共20分)
1.函数\(z=\ln(x+y)\)的定义域是()
A.\(x+y\gt0\)B.\(x+y\geq0\)C.\(x+y\neq0\)D.\(x\gt0,y\gt0\)
2.设\(z=x^2y\),则\(\frac{\partialz}{\partialx}\)等于()
A.\(2xy\)B.\(x^2\)C.\(y\)D.\(2x\)
3.二重积分\(\iint_D1dxdy\)(\(D\)为\(x^2+y^2\leq4\))的值为()
A.\(4\pi\)B.\(2\pi\)C.\(\pi\)D.\(8\pi\)
4.设\(L\)为从\((0,0)\)到\((1,1)\)的直线段,则\(\int_Lxdy\)的值为()
A.\(\frac{1}{2}\)B.\(1\)C.\(\frac{3}{2}\)D.\(0\)
5.级数\(\sum_{n=1}^{\infty}\frac{1}{n}\)是()
A.收敛的B.发散的C.条件收敛的D.绝对收敛的
6.幂级数\(\sum_{n=0}^{\infty}x^n\)的收敛半径是()
A.\(0\)B.\(1\)C.\(+\infty\)D.\(2\)
7.微分方程\(y+y=0\)的通解是()
A.\(y=Ce^x\)B.\(y=Ce^{-x}\)C.\(y=Cx\)D.\(y=C\)
8.设\(u=xyz\),则\(\nablau\)在点\((1,1,1)\)处的值为()
A.\((1,1,1)\)B.\((0,0,0)\)C.\((yz,xz,xy)\)D.\((1,2,3)\)
9.曲线\(x=t,y=t^2,z=t^3\)在点\((1,1,1)\)处的切线方程是()
A.\(\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}\)B.\(\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}\)
C.\(\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{1}\)D.\(\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{0}\)
10.函数\(f(x,y)=x^2+y^2\)在点\((0,0)\)处()
A.有极大值B.有极小值C.无极值D.不是驻点
答案:1.A2.A3.A4.A5.B6.B7.B8.A9.A10.B
二、多项选择题(每题2分,共20分)
1.下列函数中,在其定义域内连续的有()
A.\(z=\frac{1}{x-y}\)B.\(z=\sqrt{x^2+y^2}\)C.\(z=\ln(x^2+y^2)\)D.\(z=\sin(x+y)\)
2.关于偏导数,下列说法正确的是()
A.若\(z=f(x,y)\)在点\((x_0,y_0)\)处可微,则在该点处偏导数存在
B.若\(z=f(x,y)\)在点\((x_0,y_0)\)处偏导数存在,则在该点处可微
C.偏导数\(\frac{\partialz}{\partialx}\)是把\(y\)看作常数对\(x\)求导
D.偏导数\(\frac{\partialz}{\partialy}\)是把\(x\)看作常数对\(y\)求导
3.下列积分中,可化为二次积分\(\int_{0}^{1}dx\int_{x^2}^{x}f(x,y)dy\)的有()
A.\(\iint_Df(x,y)dxdy\),\(D\)由\(y=x^2\),\(y=x\)围成B.\(\iint_Df(x,y)dxdy\),\(D\)由\(x=y^2\),\(x=y\)围成
C.\(\iint_Df(x,y)dxdy\),\(D\)由\(y=0\),\(y=1\),\(x=y^2\),\(x=y\)围成D.\(\iint_Df(x,y)dxdy\),\(D\)由\(x=0\),\(x=1\),\