基本信息
文件名称:高数下册试题及答案.doc
文件大小:26.84 KB
总页数:7 页
更新时间:2025-05-29
总字数:约5.02千字
文档摘要

高数下册试题及答案

一、单项选择题(每题2分,共20分)

1.函数\(z=\ln(x+y)\)的定义域是()

A.\(x+y\gt0\)B.\(x+y\geq0\)C.\(x\gt0\)且\(y\gt0\)D.\(x\geq0\)且\(y\geq0\)

2.设\(z=x^2y\),则\(\frac{\partialz}{\partialx}\)=()

A.\(2xy\)B.\(x^2\)C.\(2x\)D.\(y\)

3.曲线\(x=t\),\(y=t^2\),\(z=t^3\)在点\((1,1,1)\)处的切线方程为()

A.\(\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}\)B.\(\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}\)

C.\(\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{1}\)D.\(\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{3}\)

4.设\(D\)是由\(x=0\),\(y=0\),\(x+y=1\)所围成的区域,则\(\iint_Ddxdy\)=()

A.\(\frac{1}{2}\)B.\(1\)C.\(\frac{1}{3}\)D.\(2\)

5.级数\(\sum_{n=1}^{\infty}\frac{1}{n^p}\)当()时收敛。

A.\(p\leq1\)B.\(p\gt1\)C.\(p\geq1\)D.\(p\lt1\)

6.函数\(z=f(x,y)\)在点\((x_0,y_0)\)处可微的充分条件是()

A.\(f_x(x_0,y_0)\)和\(f_y(x_0,y_0)\)存在B.\(f(x,y)\)在点\((x_0,y_0)\)处连续

C.\(\lim_{\Deltax\to0,\Deltay\to0}\frac{\Deltaz-f_x(x_0,y_0)\Deltax-f_y(x_0,y_0)\Deltay}{\sqrt{(\Deltax)^2+(\Deltay)^2}}=0\)D.\(f(x,y)\)在点\((x_0,y_0)\)的某邻域内有定义

7.设\(L\)是从点\((0,0)\)到点\((1,1)\)的直线段,则\(\int_Lxdy\)=()

A.\(\frac{1}{2}\)B.\(1\)C.\(\frac{1}{3}\)D.\(0\)

8.设\(u=xyz\),则\(\nablau\)=()

A.\((yz,xz,xy)\)B.\((x,y,z)\)C.\((y,z,x)\)D.\((xyz,xyz,xyz)\)

9.幂级数\(\sum_{n=0}^{\infty}a_n(x-x_0)^n\)的收敛半径\(R\)的求法是()

A.\(R=\lim_{n\to\infty}\frac{a_n}{a_{n+1}}\)B.\(R=\lim_{n\to\infty}\vert\frac{a_n}{a_{n+1}}\vert\)

C.\(R=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\)D.\(R=\lim_{n\to\infty}\vert\frac{a_{n+1}}{a_n}\vert\)

10.设\(z=e^{xy}\),则\(dz\)=()

A.\(e^{xy}dx\)B.\(e^{xy}dy\)C.\(ye^{xy}dx+xe^{xy}dy\)D.\(xye^{xy}dx\)

二、多项选择题(每题2分,共20分)

1.以下哪些是多元函数的性质()

A.连续性B.可导性C.可微性D.偏导数存在性

2.计算二重积分\(\iint_Df(x,y)dxdy\)时,可采用的坐标系有()

A.直角坐标系B.极坐标系C.柱面坐标系D.球面坐标系

3.下列级数中,哪些是收敛的()

A.\(\sum_{n=1}^{\infty}\frac{1}{n(