名师精编优秀教案
教案
一元二次方程
名师精编优秀教案
小结与复习(1)
教学目标
1、理清本章的知识结构,培养学生归纳能力。
2、掌握本章的有关概念,一元二次方程的四种解法——因式分解法、直接开平方法、配方、公式法。
3、掌握本章的主要数学思想和方法。
重点难重
重点:一元二次方程解法。
难点:选用适当的方法解一元二次方程。
教学过程
(一)复习引入
1、回顾本章的主要数学思想和方法。
本章主要的数学思想是化归与转化,即把需要解决或较难解决的问题,通过适当的方法,把它化归与转化为已经解决或较容易解决的问题,从而使问题得以解决。
2、理清本章的知识结构图。
请同学们用知识结构图将所学的有关一元二次方程的知识连接起来。
说明:在知识结构图和教学过程中,既要注复习知识、方法,又要注意培养学生的归纳总结能力。
(二)讲解例题
例1选择题:
(1)mx2-3x+x2=0是关于x的一元二次方程的条件是()
Am=1Bm≠-1Cm≠0Dm为任意实数
(2)用配方法解方程4x2+4x-15=0时将方程配方的结果是()
A(x+2)2=19B(2x+1)2=16C(x+)2=4D(x+1)2=4
评注:(1)先把方程化成关于x的一元二次方程的一般形式(m+1)x2-3x+2=0然后确定m+1≠0,即m≠-1。
(2)配方法虽然在解一元二次方程时很少用,但配方法是一种很重要的数学方法,不可忽视。
例2选择适当的方法解下列方程:
(1)(x-1)2+x(x-1)2=0(2)9(x-3)2-4(x-2)2=0
(3)-2y2+3=y(4)x2+2x-4=0
评注:1、公式法是解一元二次方程的一般方法,应掌握这种解一元二次方程的通法。
2、因式分解法、直接开平方法是解一元二次方程的特殊方法,要注意这两
名师精编优秀教案
种方法适用的方程形式。
3、一般先看方程能否用因式分解法或直接开平方法求解,如不能用这两种方法再考虑用公式法解。
(三)巩固练习
1填空:
(1)(k-1)x2-kx+1=0是关于x的一元二次方程的条件是。
(2)填写下表。
一元二次方程
3x2-5=2x
(x+1)2=4
πx2=0
x(x+)=0
一般形式二次项数一次项系数常数项
答案:(1)k≠1。(2)见下表:
一元二次方程
3x2-5=2x
(x+1)2=4x2=0
x(x+)=0
一般形式
3x2-2x-5=0
x2+-3=0x2=0
二次项系数
3
1
π1
一次系数
-2
2
0
常数项
-5
-3
0
0
2、选做课本复习题一中B组第1,2题。
(四)课堂小结
1、一元二次方程的一般形式是什么?
2、解一元二次方程的四种方法所适用的方程的条件是什么?
3、怎么选择适当的法解一无二次方程?
(五)思考与拓展
1、已知方程mx2+mx+3m-x2+x+2=0,当m时,为一元二次方程;当m时,为一元一次方程。
2、选做课本复习题一的C组题。
布置作业
课本复习题一中A组第1、2、3题。
教学后记:
名师精编优秀教案
小结与复习(2)
教学目标
1、熟练运用一元二次方程解实际问题。
2、通过将一些实际问题抽象为方程模的过程,让学生形成良好的思维习惯,学会从数学的角度提出问题,理解问题,并能运用所学知识解决问题,体会数学的价值。
重点难重
重点:运用一元二次方程解实际问题。
难点:找出问题中的等量关系,列出一元二次方程。
教学过程
(一)复习引入
学生交流讨论下列问题。
1、运用一元二次方程解实际问题的一般步骤是什么?
2、运用一元二次方程解实际问题关键是什么?
3、运用一元二次方程解实际问题要注意什么?
(二)讲解例题
例1.某工厂生产一种产品,今年产量为200件,计划通过技术改造,使今后两年的产量都比前一年增一个相同的百分数,这样三年的总产量达到1400件,求这个百分数。
分析:此题是增长率问题,运用复利公式:Q=a(1+x),通过列方程求出x的值。
[解]设这个百分数为x。则今后第一年的产量为200(1+x)件,今后第二年的产量为200(1+x)2件,根据题意,得200+200(1+x)+200(1+x)2=1400
化简得