电磁性能碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角,表现出导体和半导体性能;完美碳纳米管比缺陷碳纳米管的电阻小一个数量级;径向电阻大于轴向电阻;碳纳米管束和单根纳米管都显示超导性,后者显示温度更低。第31页,共55页,星期日,2025年,2月5日热学性能碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高。碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。光学性能碳纳米管具有良好的场发射性能。碳纳米管薄膜对太阳光有较强的吸收作用。第32页,共55页,星期日,2025年,2月5日电弧放电法电弧放电法制备的碳纳米管空间取向不定、易烧结,且杂质含量较高。第33页,共55页,星期日,2025年,2月5日激光蒸发法主要缺点在于单壁碳纳米管的纯度较低、易纠结。第34页,共55页,星期日,2025年,2月5日化学气相沉积法其生长主要过程包括过渡金属催化剂颗粒吸附和分解碳氢化合物,生成的碳原子扩散至催化剂内部形成金属-碳的固溶体,碳原子从过饱和的催化剂颗粒中析出,形成碳管结构。CVD方法的优点在于能够批量生产,降低合成成本。而缺点在于容易形成有缺陷的碳管材料。常用气体:C6H6,C2H2,C2H4等常用温度范围:500-1000?C常用催化剂:Fe,Co,Ni等第35页,共55页,星期日,2025年,2月5日碳纳米管的生长机制自从1991年Iijima发现碳纳米管以来,理论上对于碳纳米管的形成提出了各种生长模型,如:五元环-七元环缺陷沉积生长层-层相互作用生长(lip-lipinteraction)层流生长(stepflow)端部生长(tipgrowth)底部生长(basegrowth)喷槊生长(extrusionmode)第36页,共55页,星期日,2025年,2月5日端部生长和喷槊生长喷槊生长模式认为金属催化剂才是碳纳米管的持续生长点,碳原子不断沉积到催化剂颗粒上形成金属-碳合金,当碳原子达到饱和时由颗粒的一端析出形成碳纳米管。这两种机理的主要区别在于生长过程中先形成的一端距离催化剂的相对位置远近。端部生长模式假定催化剂颗粒在碳纳米管的生长过程中起到促进成核的作用。一旦碳纳米管初步形成并将催化剂包覆起来以后,生长点即转为管的开口端,碳源不断沉积到开口的悬键上导致碳纳米管持续生长。温度降低时开口端封闭停止生长。第37页,共55页,星期日,2025年,2月5日顶部生长和底部生长底部生长模式:即金属催化剂颗粒附着在衬底上,碳纳米管的顶端封闭,且不含催化剂。碳源从碳纳米管与催化剂材料的接界处提供。顶部生长模式:即位于碳纳米管顶端的金属催化剂颗粒随着碳纳米管的生长而移动,被携带移动的催化剂颗粒用来提供碳纳米管生长所必需的碳源。严格说来,这两种模式不涉及到本质的机理不同,它们都属于喷槊生长。区别只是催化剂在生长过程中是停留在衬底上还是被顶在碳纳米管的尖端上。这种区别仅仅由催化剂与衬底的附着力强弱而定。第38页,共55页,星期日,2025年,2月5日CVD生长机理实验验证实验过程采用了两种同位素通气顺序,(1)先通12C乙烯15s,再通13C乙烯45s;(2)先通13C乙烯15s,再通12C乙烯45s。第39页,共55页,星期日,2025年,2月5日CVD生长机理实验验证13C标记的MWCNT阵列的微区拉曼谱(a)纯12C和纯13CMWCNT阵列的参考拉曼谱(b)先通12C再通13C的乙烯生长的阵列极其微区拉曼谱(c)先通13C再通12C的乙烯生长的阵列极其微区拉曼谱MWCNT的生长机理示意图图中黑色椭圆表示附着在多孔硅衬底(白点区域)的Fe催化剂颗粒,阴影部分表示13C同位素。四个瞬间表示出12C-13C同位素结碳纳米管的生长过程。第40页,共55页,星期日,2025年,2月5日Shape-selectivetransportationinnanoporesHindsBJetal,Science,303,62HindsBJetal,JACS2005,127,9062第41页,共55页,星期日,2025年,2月5日关于富勒烯与碳纳米管第1页,共55页,星期日,2025年,2月5日碳元素的同素异形体a金刚石b石墨c蓝丝黛尔石