的式整乘14.1.2幂的乘方班级:XXX时间:20XX.XX法
整式的乘法14.1.2幂的乘方人教版八年级数学上册数学人教版八年级上册授课人:XXX
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?导入新知?
1.理解并掌握幂的乘方法则.2.能熟练地运用幂的乘方的法则进行化简和计算.素养目标
10103=边长2=边长×边长S正请分别求出下列两个正方形的面积?幂的乘方的法则(较简单的)S小=10×10=102=103×103S大=(103)2知识点1=106探究新知
请根据乘方的意义及同底数幂的乘法填空.观察计算的结果,你能发现什么规律?证明你的猜想.(32)3=___×___×___=3()+()+()=3()×()=3()323232222236猜想:(am)n=_____.amn探究新知
(am)n幂的乘方法则(am)n=amn(m,n都是正整数)即幂的乘方,底数______,指数____.不变相乘=am·am·am…amn个am=am+m+…+mn个m证明猜想探究新知
运算种类公式法则中运算计算结果底数指数同底数幂乘法幂的乘方乘法乘方不变不变指数相加指数相乘am·an=am+n探究新知
例计算:解:(1)(103)5=103×5=1015;(2)(a2)4=a2×4=a8;(3)(am)2=am·2=a2m;(3)(am)2;(4)–(x4)3=–x4×3=–x12.(1)(103)5;(2)(a2)4;(4)–(x4)3;(6)[(–x)4]3.(5)[(x+y)2]3;(5)[(x+y)2]3=(x+y)2×3=(x+y)6;(6)[(–x)4]3=(–x)4×3=(–x)12=x12.素养考点1幂的乘方的法则的应用探究新知
方法点拨运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.在运算时,注意把底数看成一个整体,同时注意“负号”.探究新知
计算:①(103)7; ②(b3)4;③(xn)3; ④–(x7)7=103×7=1021=b3×4=b12=x3n=–x7×7=–x49⑤[(–x)3]3=(–x)3×3=–x9⑥[(–x)5]4=(–x)5×4=(–x)20=x20巩固练习
(–a5)2表示2个–a5相乘,结果没有负号.(–a2)5和(–a5)2的结果相同吗?为什么?不相同.(–a2)5表示5个–a2相乘,其结果带有负号.n为偶数n为奇数知识点2幂的乘方的法则(较复杂的)想一想探究新知
下面这道题该怎么进行计算呢?幂的乘方:=(a6)4=a24[(y5)2]2=______=________[(x5)m]n=______=________练一练:(y10)2y20(x5m)nx5mn探究新知
例1计算:(1)(x4)3·x6;(2)a2(–a)2(–a2)3+a10.解:(1)(x4)3·x6=x12·x6=x18;(2)a2(–a)2(–a2)3+a10=–a2·a2·a6+a10=–a10+a10=0.忆一忆有理数混合运算的顺序先乘方,再乘除先乘方,再乘除,最后算加减底数的符号要统一素养考点1有关幂的乘方的混合运算探究新知
方法点拨与幂的乘方有关的混合运算中,一般先算幂的乘方,再算同底数幂的乘法,最后算加减,然后合并同类项.探究新知
计算:(1)(x3)4·x2;(2)2(x2)n–(xn)2;(3)[(x2)3]7;(4)[(–m)3]2·(m2)4.(1)原式=x12·x2=x14.(2)原式=2x2n–x2n=x2n.(3)原式=(x2)21=x42.解:(4)原式=(–m)3×2·m2×4=m6·m8=m14.巩固练习
例2已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)103m=(10m)3=33=27;(2)102n=(10n)2=22=4;(3)103m+2n