第
第PAGE1页共NUMPAGES36页
答案第=page11页,共=sectionpages22页
2025年中考数学总复习《几何模型之倍长中线》专项测试卷(附答案)
学校:___________姓名:___________班级:___________考号:___________
1.先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.
在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.
解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.
2.已知:如图,AD,AE分别是△ABC和△ABD的中线,且BA=BD.求证:AE=AC.
3.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.
4.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF连接EF
(1)如图1,求证:∠BED=∠AFD;
(2)求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.
5.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
??
(1)如图1所示,若AB=8,CD=2,求OH的长;
(2)将△COD绕点O旋转一定的角度到图2所示位置时,线段OH与AD有怎样的数量和位置关系,并证明你的结论.
6.(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.
解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系______.
(2)问题探究.
①如图②,AD是△ABC的中线,AB=6,AC=4,求AD的范围:
②如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
??
7.在中,,,为等边三角形,,连接,为中点.
(1)如图1,当,,三点共线时,请画出关于点的中心对称图形,判断与的位置关系是;
(2)如图2,当A,,三点共线时,问(1)中结论是否成立,若成立,给出证明,若不成立,请说明理由;
(3)如图2,取中点,连,将绕点旋转,直接写出旋转过程中线段的取值范围是.
8.如图,已知△ABC中,点D在AB上,点E在AC的延长线上,且BD=CE,连接DE交BC于点G,若DG=GE,说明:△ABC为等腰三角形.
9.已知,在中,,点为边的中点,分别交,于点,.
(1)如图1,①若,请直接写出______;
②连接,若,求证:;
(2)如图2,连接,若,试探究线段和之间的数量关系,并说明理由.
10.阅读理解:
(1)如图1,在中,若,,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点,使得,再连接,把,,集中在中,利用三角形三边关系即可判断中线的取值范围是______.
(2)解决问题:如图2,在中,是边上的中点,,交于点,交于点,连接,求证:.
(3)问题拓展:如图3,在中,是边上的中点,延长至,使得,求证:.
11.数学活动课中,老师给出以下问题:
(1)如图1,在中,D是边的中点,若,则中线长度的取值范围______.
(2)如图2,在中,D是边的中点,过D点的射线交边于E,再作交边于点F,连结,请探索由三条线段????、、构成的三角形的形状,并说明理由.
(3)已知:如图3,且,F是线段的中点.求证:.
12.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.
(1)连接AE、CD,如图1,求证:AE=CD;
(2)若N为CD中点,连接AN,如图2,求证:CE=2AN
(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)
13.问题提出:
如图①所示,在矩形和矩形中,,点A,O,D不在同一直线上,连接.是的中线,那么之间存在怎样的关系?
(1)问题探究:先将问题特殊化,如图②所示,当且时,的数量关系是________,位置关系是________.
(2)问题拓展:再