专题29规律探究题(26题)
一、单选题
1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是(????)
??
A.39 B.44 C.49 D.54
2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为(????)
??
A.14 B.20 C.23 D.26
3.(2023·云南·统考中考真题)按一定规律排列的单项式:,第个单项式是(????)
A. B. C. D.
4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形,正方形,按此规律作下去,所作正方形的顶点均在格点上,其中正方形的顶点坐标分别为,,则顶点的坐标为(????)
??
A. B. C. D.
5.(2023·山东·统考中考真题)已知一列均不为1的数满足如下关系:,,若,则的值是(????)
A. B. C. D.2
6.(2023·四川达州·统考中考真题)如图,四边形是边长为的正方形,曲线是由多段的圆心角的圆心为,半径为;的圆心为,半径为的圆心依次为循环,则的长是(????)
??
A. B. C. D.
7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数若排在第a行b列,则的值为(???)
????
????????
???????????
……
A.2003 B.2004 C.2022 D.2023
8.(2023·四川内江·统考中考真题)对于正数x,规定,例如:,,,,计算:()
A.199 B.200 C.201 D.202
9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点,其中,且是整数.记,如,即,即,即,以此类推.则下列结论正确的是(????)
??
A. B. C. D.
二、填空题
10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数,的平方差,且,则称这个正整数为“智慧优数”.例如,,16就是一个智慧优数,可以利用进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.
11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为,乙烷的化学式为,丙烷的化学式为……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.
??
12.(2023·湖南岳阳·统考中考真题)观察下列式子:
;;;;;…
依此规律,则第(为正整数)个等式是.
13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:
设有编号为1100的100盏灯,分别对应着编号为1100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”
的灯共有多少盏?
几位同学对该问题展开了讨论:
甲:应分析每个开关被按的次数找出规律:
乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……
丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.
根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.
14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n个图案需要火柴棍的根数为(用含n的式子表示).
??
15.(2023·山西·统考中考真题)如图是一