高数期末考试题及答案
一、单项选择题(每题2分,共20分)
1.函数\(y=\frac{1}{x-1}\)的定义域是()
A.\(x\neq0\)B.\(x\neq1\)C.\(x\gt1\)D.\(x\lt1\)
2.\(\lim_{x\to0}\frac{\sinx}{x}\)的值为()
A.0B.1C.\(\infty\)D.不存在
3.函数\(y=x^3\)的导数是()
A.\(3x^2\)B.\(x^2\)C.\(3x\)D.\(x^3\)
4.曲线\(y=x^2\)在点\((1,1)\)处的切线斜率是()
A.1B.2C.3D.4
5.若\(f(x)\)的一个原函数是\(x^2\),则\(f(x)\)=()
A.\(2x\)B.\(x^2\)C.\(\frac{1}{2}x^2\)D.\(x^3\)
6.\(\intxdx\)=()
A.\(\frac{1}{2}x^2+C\)B.\(x^2+C\)C.\(\frac{1}{3}x^3+C\)D.\(x+C\)
7.函数\(y=\cosx\)的周期是()
A.\(\pi\)B.\(2\pi\)C.\(3\pi\)D.\(4\pi\)
8.已知\(z=x+y\),则\(\frac{\partialz}{\partialx}\)=()
A.0B.1C.\(x\)D.\(y\)
9.\(\lim_{x\to\infty}(1+\frac{1}{x})^x\)=()
A.\(e\)B.1C.0D.\(\infty\)
10.函数\(y=\lnx\)的导数是()
A.\(\frac{1}{x}\)B.\(x\)C.\(-\frac{1}{x}\)D.\(\frac{1}{x^2}\)
二、多项选择题(每题2分,共20分)
1.下列函数中,是奇函数的有()
A.\(y=x^3\)B.\(y=\sinx\)C.\(y=\cosx\)D.\(y=x\)
2.以下极限存在的有()
A.\(\lim_{x\to0}\frac{1}{x}\)B.\(\lim_{x\to0}\sinx\)C.\(\lim_{x\to\infty}e^x\)D.\(\lim_{x\to0}x^2\)
3.函数\(y=f(x)\)在点\(x_0\)处可导的充分必要条件是()
A.函数在该点连续B.左右导数存在且相等
C.函数在该点有定义D.极限\(\lim_{x\tox_0}f(x)\)存在
4.下列积分计算正确的有()
A.\(\int1dx=x+C\)B.\(\intx^2dx=\frac{1}{3}x^3+C\)
C.\(\int\frac{1}{x}dx=\ln|x|+C\)D.\(\int\sinxdx=-\cosx+C\)
5.关于函数\(y=x^2\)与\(y=x^3\),正确的是()
A.\(y=x^2\)是偶函数B.\(y=x^3\)是奇函数
C.\(y=x^2\)在\((0,+\infty)\)单调递增D.\(y=x^3\)在\(R\)上单调递增
6.多元函数\(z=f(x,y)\)在点\((x_0,y_0)\)处可微的必要条件有()
A.偏导数\(\frac{\partialz}{\partialx}\),\(\frac{\partialz}{\partialy}\)存在B.函数在该点连续
C.全增量\(\Deltaz=A\Deltax+B\Deltay+o(\rho)\)D.偏导数连续
7.下列级数中,收敛的有()
A.\(\sum_{n=1}^{\infty}\frac{1}{n^2}\)B.\(\sum_{n=1}^{\infty}\frac{1}{n}\)
C.\(\sum_{n=1}^{\infty}(-1)^n\frac{1}{n}\)D.\(\sum_{n=1}^{\infty}2^n\)
8.曲线\(y=f(x)\)的渐近线可能有()
A.水平渐近线B.垂直渐近线C.