基本信息
文件名称:广东省潮州市饶平县2024?2025学年高一下学期阶段性质量检测(二) 数学试题(含解析).docx
文件大小:966.38 KB
总页数:9 页
更新时间:2025-06-05
总字数:约2.64千字
文档摘要

广东省潮州市饶平县2024?2025学年高一下学期阶段性质量检测(二)数学试题

一、单选题

1.已知集合,,则(????)

A. B. C. D.

2.已知,则复数的虚部为(????)

A.2 B. C. D.

3.下列命题中为真命题的是(???)

A.有两个侧面是矩形的四棱柱是直四棱柱 B.棱柱的每个面都是平行四边形

C.正四棱柱是平行六面体 D.长方体是四棱柱,直四棱柱是长方体

4.已知,则的大小关系是(????)

A. B.

C. D.

5.在中,点,分别为,边上的中点,点满足,则(???)

A. B. C. D.

6.函数的部分图象大致是(????)

A. B.

C. D.

7.将一个半径为的金属球熔化后,先浇铸成个半径为的小球,再把剩余材料铸成个正方体,则该正方体的棱长大约为(????)

A. B. C. D.

8.已知,,若,则的最小值为(????)

A.14 B.16 C.18 D.20

二、多选题

9.用一个平面去截正方体,关于截面的说法,正确的有(?????)

A.截面有可能是三角形,并且有可能是正三角形

B.截面有可能是四边形,并且有可能是正方形

C.截面有可能是五边形,并且有可能是正五边形

D.截面有可能是六边形,并且有可能是正六边形

10.已知函数的部分图象如图所示,则下列说法正确的是(???)

A.

B.

C.直线为图象的一条对称轴

D.将图象上的所有点向左平移个单位长度得到的图象

三、填空题

11.在复平面内,复数(为虚数单位),则等于.

12.已知平面向量,,则.

13.将边长为20的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为,则.

??

14.设,用表示不超过x的最大整数,称为取整函数.例如:,,已知函数,则的值域为.

四、解答题

15.知复数,复数在复平面内对应的点为

(1)若复数是关于的方程的一个根,,求的值:

(2)若复数满足,求复数的共轭复数.

16.已知,,且与的夹角为.

(1)求的值;

(2)若,求实数的值.

17.已知圆锥的侧面展开图为半圆,母线长为.

(1)求圆锥的底面积;

(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积.

18.在△中,,.

(1)若点M是线段BC的中点,,求边的值;

(2)若,求△的面积.

19.在平面直角坐标系中,O为坐标原点,已知,是两个夹角为的单位向量,,.

(1)求;

(2)设,是否存在实数t,使得是以AB为斜边的直角三角形?若存在,求出t的值;若不存在,请说明理由.

参考答案

1.【答案】B

【详解】,

又,所以.

故选B.

2.【答案】B

【详解】由于,则,则复数的虚部为.

故选B.

3.【答案】C

【详解】对于A,可以是两对称面为矩形的平行六面体,故A错误;

对于B,棱柱的上、下底面可能不是平行四边形,比如三棱柱,五棱柱等,故B错误;

对于C,正四棱柱是平行六面体,故C正确;

对于D,当底面不是矩形时,直四棱柱不是长方体,故D错误.

故选C.

4.【答案】D

【详解】因为,所以.

故选D.

5.【答案】D

【详解】依题意,,而,

所以

故选D

6.【答案】A

【详解】由函数,定义域为,

有,

所以函数为奇函数,其图象关于原点对称,可排除B、D项;

又由,可排除C项,

所以函数的图象为选项A.

故选A.

7.【答案】B

【详解】设正方体为棱长为,则,解得.

故选B.

8.【答案】B

【详解】因为,,且,

所以,

当且仅当时,即时等号成立.

所以的最小值为16.

故选B.

9.【答案】ABD

【详解】由题意,在正方体中,

对于A中,过点三点的截面为,截面的形状为正三角形,所以A正确;

对于B中,过棱的中点,作正方体的截面,此时截面与上下底面平行且全等,所以截面的性质为正方形,所以B正确;

对于C中,用一个平面截正方体,截面可以是五边形,但不能为正五边形,所以C错误;

对于D中,如图所示,用一个平面截正方体,当取各边的中点时,截面是正六边形,所以D正确.

故选ABD.

?????

10.【答案】AD

【详解】由函数的图象,可得,可得,则,

又由,所以,

又由,即,

因为,所以,可得,所以,

所以选项A正确;选项B错误;

对于C,由不为函数的最值,

所以直线不是图象的一条对称轴,选项C不正确;

对于D,将图象上的所有点向左平移个单位长度,

可得,选项D正确.

故选AD.

11.【答案】

【详解】因为复数,所以.

12.【答案】5

【详解】设,

,,

,解得:,

.

13.【答案】

【详解】由题意,在平面直角坐标系中,三角形是边长为20的正三角形,

,边上的高为,

按“斜二测”画法如下图所示:

??,,

在三角形中,,

由余弦定理得,.

14.【答