基本信息
文件名称:变频器工作原理.ppt
文件大小:5.13 MB
总页数:77 页
更新时间:2025-06-06
总字数:约1.19万字
文档摘要

按照不同的控制方式,又可将间接变频装置分为下图中的(a)、(b)、(c)3种。第30页,共77页,星期日,2025年,2月5日1.可控整流器变压、变频器变频调压和调频分别在两个环节上进行,两者要在控制电路上协调配合..这种装置结构简,控制方便,输出环节用由晶闸管(或其他电子器件)组成的3相6拍变频器(每周换流6次),但由于输入环节采用可控整流器,在低压深控时电网端的功率因数较低,还将产生较大的谐波成分,一般用于电压变化不太大的场合2.直流斩波器调压、变频器变频采用不可摔整流器,保证变频器的电网侧有较高的功率因数,在直流环节上设置直流斩波器完成电压调节。这种调压方法有效地提高了变频器电网侧的功率因数,并能方便灵活地调节电压,但增加了一个电能变换环节——斩波器,该方法仍有谐波较大的问题。第31页,共77页,星期日,2025年,2月5日3.变频器自身调压、变频采用不可控整流器,通过变频器自身的电子开关进行斩波控制,使输出电压为脉冲列。改变输出电压脉冲列的脉冲宽度,便可达到调节输出电压的目的。这种方法称为脉宽调制(PWM)。因采用不可控整流,功率因数高;因用PWM逆变,谐波可以大大减少。谐波减少的程度取决于开关频率,而开关频率则受器件开关时问的限制。若仍采用普通晶闸管,开关的频率并不能有效地提高,只有采用全控型器件,开关频率才能得以大大提高,输出波形几乎可以得到非常逼真的正弦波,因而又称正弦波脉宽调制(SPWM)变频器。该变频器将变频和调功能集于一身,主电路不用附加其他装置,结构简单,性能优良。成为当前最有发展前途的一种结构形式。第32页,共77页,星期日,2025年,2月5日4.3交-交与交-直-交变频器之比较

交-交变频器交-直-交变频器过载能力强效率高输出波形好但输出频率低使用功率器件多输入无功功率大高次谐波对电网影响大结构简单输出频率变化范围大功率因数高谐波易于消除可使用各种新型大功率器件第33页,共77页,星期日,2025年,2月5日(五)PWM控制技术PWM控制技术一直是变频技术的核心技术之一。从最初采用模拟电路完成三角调制波和参考正弦波的比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,PWM在各种应用场合仍占主导地位,并一直是人们研究的热点。由于PWM可以同时实现变频变压反抑制谐波的特点,因此在交流传动乃至其他能量交换系统中得到广泛的应用。PWM控制技术大致可以分为三类:正弦PWM,优化PWM,随机PWM。正弦PWM具有改善输出电压和电流波形、降低电源系统谐波的多重PWM技术,在大功率变频器中有其独特的优势;优化PWM所追求的则是实现电流谐波畸变率最小、电压利用率最高、效率最优、转矩脉动最小及其他特定优化目标;随机PWM原理是随机改变开关频率使电机电磁噪音近似为限带白噪声,尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。第34页,共77页,星期日,2025年,2月5日正弦波脉宽调制(SPWM)变频器SPWM变频器结构简单,性能优良,主电路不用附加其他装置,已成为当前最有发展前途的一种结构形式。图3所示为SPWM变频器的电路原理,该电路的主要特点是:(1)主电路只有一个可控的功率环节,简化了结构;(2)使用了不可控的整流器,使电网功率因数与变频器输出电压的大小无关而接近于1;(3)变频器在调频的同时实现调压,而与中间直流环节的元件参数无关,加快了系统的动态响应;(4)可获得比常规6拍阶梯波更好的输出电压波形,能抑制或消除低次谐波,使负载电动机可在近似正弦波的交变电压下运行,转矩脉动小,大大扩展了拖动系统调速范围,并提高了系统的性能。第35页,共77页,星期日,2025年,2月5日SPWM变频器的工作原理所谓正弦波脉宽调制(SPWM)就是把正弦波等效为一系列等幅不等宽的矩形脉冲波形,如图4所示,等效的原则是每一区间的面积相等。第36页,共77页,星期日,2025年,2月5日如果把一个正弦半波分作n等份(图中n=12),然后把每一等份的正弦曲线与横轴所包围的面积都用一个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等份的中点重合,而宽度是按正弦规律变化的如图4(b)所示。这样,由n个等幅而不等宽的矩形脉冲所组成的波形就与正弦半周等效,称作SPWM波形。同样,正弦波负半周也可用相同方法与一系列负脉冲波来等效。第37页,共77页,星期日,2025年,2月5日第38页,共77页,星期日,2025年,2月5日图4(b)所示的一系列脉冲波形就是所期望的变频器输出SPWM波形。可以看