第PAGE1页/共NUMPAGES1页
2022-2024北京重点校高一(下)期末数学汇编
概率与统计章节综合(人教B版)
一、单选题
1.(2024北京丰台高一下期末)同时抛掷两枚质地均匀的骰子,观察向上的点数,记事件A=“点数之和为5”,事件B=“点数之积为6”,事件C=“至少有一个点数为3”,事件D=“点数都不为3”,则(????)
A.为不可能事件 B.与相互独立
C.B与D互斥 D.C与D互为对立
2.(2024北京通州高一下期末)达芬奇方砖是在正六边形上画了具有视觉效果的正方体图案,把六片这样的达·芬奇方砖拼成下图的组合,这个组合再转换成几何体,则需要10个正方体叠落而成,若一个小球从图中阴影小正方体出发,等概率向相邻小正方体(具有接触面)移动一步,则经过两步移动后小球又回到阴影小正方体的概率为(????)
A. B. C. D.
3.(2024北京大兴高一下期末)甲,乙,丙三人独立破译同一份密码.已知甲,乙,丙各自独立破译出密码的概率分别为,且他们是否破译出密码互不影响,则至少有2人破译出密码的概率是(?????)
A. B.
C. D.
4.(2023北京朝阳高一下期末)甲、乙两人射击,甲的命中率为0.6.乙的命中率为0.5,如果甲、乙两人各射击一次,恰有一人命中的概率为(????)
A.0.3 B.0.4 C.0.5 D.0.6
二、填空题
5.(2022北京第八十中学高一下期末)如图,该电路由三个元件组成,每个元件之间能否正常运行是相互独立的,已知元件A,B,C能正常运行的概率分别为0.3、0.4、0.5,则该电路能正常运行的概率是.
三、解答题
6.(2024北京通州高一下期末)在中小学生体质健康测试中,甲、乙两人各自测试通过的概率分别是0.6和0.8,且测试结果相互独立,求:
(1)两人都通过体质健康测试的概率;
(2)恰有一人通过体质健康测试的概率;
(3)至少有一人通过体质健康测试的概率.
7.(2024北京通州高一下期末)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.为了解某校学生选科情况,现从高一、高二、高三学生中各随机选取了100名学生作为样本进行调查,调查数据如下表,用频率估计概率.
选考情况
第1门
第2门
第3门
第4门
第5门
第6门
物理
化学
生物
历史
地理
政治
高一选科人数
80
70
35
20
35
60
高二选科人数
60
45
55
40
40
60
高三选科人数
50
40
60
40
40
70
(1)已知该校高一年级有400人,估计该学校高一年级学生中选考历史的人数;
(2)现采用分层抽样的方式从样本中随机抽取三个年级中选择历史学科的5名学生组成兴趣小组,再从这5人中随机抽取2名同学参加知识问答比赛,求这2名参赛同学来自不同年级的概率;
(3)假设三个年级选择选考科目是相互独立的.为了解不同年级学生对各科目的选择倾向,现从高一、高二、高三样本中各随机选取1名学生进行调查,设这3名学生均选择了第k门科目的概率为,当取得最大值时,写出k的值.(结论不要求证明)
8.(2024北京大兴高一下期末)6件产品中有4件一等品,2件二等品,从中随机取出两件产品.事件“两件产品中有一等品”,事件“两件产品中有二等品”.
(1)用适当的符号写出该随机试验的样本空间;
(2)分别求事件的概率;
(3)判断事件是否相互独立,并说明理由.
9.(2023北京丰台高一下期末)在新高考背景下,北京高中学生需从思想政治?历史?地理?物理?化学?生物这6个科目中选择3个科目学习并参加相应的等级性考试.为提前了解学生的选科意愿,某校在期中考试之后,组织该校高一学生进行了模拟选科.为了解物理和其他科目组合的人数分布情况,某教师整理了该校高一(1)班和高一(2)班的相关数据,如下表:
物理+化学
物理+生物
物理+思想政治
物理+历史
物理+地理
高一(1)班
10
6
2
1
7
高一(2)班.
15
9
3
1
6
其中高一(1)班共有40名学生,高一(2)班共有38名学生.假设所有学生的选择互不影响.
(1)从该校高一(1)班和高一(2)班所有学生中随机选取1人,求此人在模拟选科中选择了“物理+化学”的概率;
(2)从表中选择“物理+思想政治”的学生中随机选取2人参加座谈会,求这2人均来自高一(2)班的概率;
(3)该校在本学期期末考试之后组织高一学生进行了第二次选科,现从高一(1)班和高一(2)班各随机选取1人进行访谈,发现他们在第二次选科中都选择了“物理+历史”.根据这一结果,能否认为在第二次选科中选择“物理+历史”的人数发生了变化?说明理由.
10.(2023北