2023~2024学年度下学期二轮复习验收
九年级数学试题
2024.05
注意事项:
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡的规定位置,答案全部填涂在答题卡上,答在本试卷上不得分.考试结束后,只将答题卡交回.
第Ⅰ卷(选择题共30分)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的()
A.-6 B.6 C.0 D.无法确定
【答案】B
解析:
-6的相反数是6,A点表示-6,所以B点表示6.
故答案为:B.
2.在数学活动课中,同学们利用几何画板绘制出了下列曲线,其中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】D
解:A、是轴对称图形,但不是中心对称图形,不符合题意;
B、是轴对称图形,但不是中心对称图形,不符合题意;
C、是轴对称图形,但不是中心对称图形,不符合题意;
D、既是轴对称图形,也是中心对称图形,符合题意;
故选D.
3.计算的结果是()
A. B. C. D.
【答案】C
解:
,
故选:C.
4.如图,直线,点在直线上,点在直线上,连接,过点作,交直线于点.若,则的度数为()
A. B. C. D.
【答案】D
解:∵直线,
∴,
∵,
∴,
∵,
∴,
故选:.
5.函数y=中,自变量x的取值范围在数轴上表示正确的是()
A B. C. D.
【答案】B
解析:
根据函数y=可得出x-5≥0,再解出一元一次不等式即可.
由题意得,x-5≥0,
解得x≥5.
在数轴上表示如下:
故选B.
6.九(1)班采用民主投票的方式评选一名“最有责任心的班干部”,班里每位同学都可以从5名候选人中选择一名无记名投票,根据投票结果判断最终当选者所需要考虑的统计量是()
A.平均数 B.众数 C.中位数 D.方差
【答案】B
解:班里每位同学都可以从5名候选人中选择一名无记名投票.根据投票结果判断最终当选者所需要考虑的统计量是众数,
故选:B.
7.如图,在正方形纸片上进行如下操作:
第一步:剪去长方形纸条;
第二步:从长方形纸片上剪去长方形纸条.
若长方形纸条和的面积相等,则的长度为()
A. B. C. D.
【答案】A
解:设正方形的边长为,
由题意,得.
解得.
故选:A.
8.如图,有公共顶点O的两个边长为4的正五边形(不重叠),以点O为圆心,4为半径作弧,构成一个“蘑菇”形图案(阴影部分),则这个“蘑菇”形图案的面积为()
A. B. C. D.
【答案】C
解:如图,
根据题意得:,
∴.
∴的长.
∴这个“蘑菇”形图案的面积,
故选C.
9.如图,在△ABC中,,点D是边上一点,点B关于直线的对称点为,当时,则的度数为()
A. B. C. D.
【答案】B
解:∵,
∴,
∵,
∴,
∵点B关于直线的对称点为,
∴,
∴.
故选:B.
10.如图,关于的函数的图象与轴有且仅有三个交点,分别是,,,对此,小华认为:①当时,;②当时,有最小值;③点在函数的图象上,符合要求的点只有1个;④将函数的图象向右平移1个或3个单位长度经过原点.其中正确的结论有()
A.①②③ B.②③④ C.②④ D.③④
【答案】C
解析:
由函数图象可得:
当时,或;故①错误;
当时,有最小值;故②正确;
点在直线上,直线与函数图象有3个交点,故③错误;
将函数的图象向右平移1个或3个单位长度经过原点,故④正确;
故选:C.
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共6小题,每小题3分,共18分)
11.写一个一元二次方程,使它有两个相等的实数根:__________(写出一个即可)
【答案】(答案不唯一)
解:∵一元二次方程有两个相等的实数根,
∴,
∴符合题意的一元二次方程可以为:,
故答案为:(答案不唯一).
12.现将4种生活现象制成外表完全相同的卡片(如图),然后将卡片背面向上洗匀从中随机抽取两张,则抽出的生活现象都是化学变化的概率是______
【答案】
解:设这四个卡片从左到右分别记为:A,B,C,D,?画树状图得:
???
∴一共有12种情况,都是化学变化的是B,D组合,有2种情况,
∴抽取的两张卡片上的生活现象都是化学变化的概率是,
故答案为:.
13.已知,,则_____.
【答案】
解:∵,,
∴
,
,
∴,
故答案为:.
14.如图,直线分别与x轴,y轴交于点A,B,将绕着点A顺时针旋转得