第02讲常用逻辑用语(精讲)
目录
TOC\o12\h\u第一部分:思维导图 2
第二部分:知识点必背 3
第三部分:高考真题回归 5
第四部分:高频考点一遍过 6
高频考点一:充分条件与必要条件的判断 6
高频考点二:充分条件与必要条件的应用 8
高频考点三:充分条件与必要条件(“是”,“的”)结构对比 11
高频考点四:全称量词命题与存在量词命题的真假判断 15
高频考点五:含有一个量词的命题的否定 17
高频考点六:根据全称(特称)命题的真假求参数 18
第五部分:高考新题型 22
①开放性试题 22
②劣构性试题 23
温馨提醒:浏览过程中按ctrl+Home可回到开头
第一部分:思维导图
第二部分:知识点必背
1、充分条件、必要条件与充要条件的概念
(1)若,则是的充分条件,是的必要条件;
(2)若且,则是的充分不必要条件;
(3)若且,则是的必要不充分条件;
(4)若,则是的充要条件;
(5)若且,则是的既不充分也不必要条件.
拓展延伸一:等价转化法判断充分条件、必要条件
(1)是的充分不必要条件是的充分不必要条件;
(2)是的必要不充分条件是的必要不充分条件;
(3)是的充要条件是的充要条件;
(4)是的既不充分也不必要条件是的既不充分也不必要条件.
拓展延伸二:集合判断法判断充分条件、必要条件
若以集合的形式出现,以集合的形式出现,即:,:,则
(1)若,则是的充分条件;
(2)若,则是的必要条件;
(3)若,则是的充分不必要条件;
(4)若,则是的必要不充分条件;
(5)若,则是的充要条件;
(6)若且,则是的既不充分也不必要条件.
拓展延伸三:充分性必要性高考高频考点结构
(1)是的充分不必要条件且(注意标志性词:“是”,此时与正常顺序)
(2)的充分不必要条件是且(注意标志性词:“的”,此时与倒装顺序)
2、全称量词与存在量词
(1)全称量词
短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.
(2)存在量词
短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.
(3)全称量词命题及其否定(高频考点)
①全称量词命题:对中的任意一个,有成立;数学语言:.
②全称量词命题的否定:.
(4)存在量词命题及其否定(高频考点)
①存在量词命题:存在中的元素,有成立;数学语言:.
②存在量词命题的否定:.
(5)常用的正面叙述词语和它的否定词语
正面词语
等于()
大于()
小于()
是
否定词语
不等于()
不大于()
不小于()
不是
正面词语
都是
任意的
所有的
至多一个
至少一个
否定词语
不都是
某个
某些
至少两个
一个也没有
第三部分:高考真题回归
1.(2022·北京·高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的(????)
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】C
【详解】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
2.(2022·天津·高考真题)“为整数”是“为整数”的(????)
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【详解】当为整数时,必为整数;
当为整数时,比一定为整数,
例如当时,.
所以“为整数”是“为整数”的充分不必要条件.
故选:A.
3.(2022·浙江·高考真题)设,则“”是“”的(????)
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
【答案】A
【详解】因为可得:
当时,,充分性成立;
当时,,必要性不成立;
所以当,是的充分不必要条件.
故选:A.
第四部分:高频考点一遍过
高频考点一:充分条件与必要条件的判断
典型例题
例题1.(2023秋·天津河北·高三统考期末)设,则“”是“”的(????)
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【详解】由得:或,
,,
“”是“”的充分不必要条件.
故选:A.
例题2.(2023秋·河北唐山·高一统考期末)已知,则“”是“”成立的(????)
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既